
 
Hydrogen in Austenite: What Changes 

after Martensitic Transformation? 
 

Thesis for MPhil in Materials Science and Metallurgy 

 

by 

Shengda Pu 
25th Sep 2018 

 

Supervised by Dr. Steve Ooi and Prof. H.K.D.H. Bhadeshia 
 

 

                             

 

 

Phase Transformations and Complex Properties Research Group 

Department of Materials Science and Metallurgy 

University of Cambridge 

 

 

 



- 1 - 
 

Preface 

 

This thesis is submitted for the degree of Master of Philosophy in Materials Science and Metallurgy at 

the University of Cambridge in 2017/2018. This work is, to my best knowledge, original. Any mention 

of previous work in this thesis has been properly referenced and acknowledged. Some part of the 

work has been presented in the following literatures:  

• S.D. Pu, A. Turk, S. Lenka, S.W. Ooi, ‘Study of hydrogen release resulting from the 
transformation of austenite into martensite’, Materials Science and Engineering: A, Vol. 754 
(2019), pp. 628-635 

• S.D. Pu, A. Turk, S. Lenka, S.W. Ooi, ‘Hydrogen Desorption Change after Deformation of a 
Bainitic Steel with Unstable Retained Austenite’, Scripta Materialia, Vol. 170 (2019), pp. 38-
42 

• S.D. Pu, S.W. Ooi, ‘Hydrogen Transport by Dislocation Movement in Austenitic Steel’ (accepted 
to Materials Science and Engineering: A, 2019) 
 

 

Acknowledgements 

 

I would like to thank both of my supervisors, Steve and Harry, for this great opportunity to work on 

this interesting project and for their constant guidance throughout this project. It is a great honour to 

work with them.  

I would also like to thank all the PT group members and other department members who have 

provided me with all kinds of help throughout this year. I would like to thank Andrej Turk for his help 

on TDA simulation and Mary Vickers for her help on XRD quantification. I would like to thank Dominik 

for showing me how to use the laboratory and Mo for being the coolest deskmate ever. Most of all, I 

want to thank Shaumik Lenka, who constantly helped me with different experiments and data analysis, 

I could have never done this project without his help.  

Finally, I would like to thank my family, I would not be in Cambridge without their support and love.  

https://www.sciencedirect.com/science/journal/09215093/754/supp/C


- 2 - 
 

 

Table of Contents 
 

Preface ................................................................................................................................................ - 1 - 

Acknowledgements ............................................................................................................................. - 1 - 

Abstract ............................................................................................................................................... - 3 - 

1 Introduction ................................................................................................................................ - 4 - 

1.1 Hydrogen embrittlement in steels ...................................................................................... - 4 - 

1.2 Hydrogen diffusion and trapping ........................................................................................ - 6 - 

1.3 Hydrogen in austenite ....................................................................................................... - 14 - 

1.4 Thermal desorption analysis ............................................................................................. - 16 - 

1.5 Microprinting .................................................................................................................... - 18 - 

2 Experimental method ............................................................................................................... - 19 - 

2.1 Specimen preparation ....................................................................................................... - 19 - 

2.2 Hydrogen charging ............................................................................................................ - 21 - 

2.3 Compression ..................................................................................................................... - 22 - 

2.4 Metallography using optical microscopy .......................................................................... - 22 - 

2.5 Scanning electron microscopy .......................................................................................... - 23 - 

2.6 X-ray diffraction ................................................................................................................ - 23 - 

2.7 Hydrogen desorption analysis........................................................................................... - 24 - 

2.8 Microprinting .................................................................................................................... - 25 - 

3 Results and Discussion .............................................................................................................. - 26 - 

3.1 Starting material characterisation .................................................................................... - 26 - 

3.2 Deformation-induced martensitic transformation ........................................................... - 35 - 

3.3 The effect of hydrogen charging time............................................................................... - 45 - 

3.4 Changes in room-temperature hydrogen desorption and XRD after compression .......... - 61 - 

3.5 Changes in constant-heating-rate TDA after compression ............................................... - 67 - 

3.6 Effect of room-temperature aging .................................................................................... - 74 - 

3.7 Other interesting desorption results from side experiments ........................................... - 83 - 

3.8 Visualization of hydrogen ................................................................................................. - 87 - 

4. Conclusions ................................................................................................................................... - 93 - 

5. Lessons learnt from failed attempts and future work .................................................................. - 95 - 

 



- 3 - 
 

Abstract  

 

Diffusible hydrogen in steels can cause embrittlement. Hydrogen has much lower diffusivity 

in austenite than in ferrite. Therefore, austenite is relatively immune to embrittlement. However, the 

poor stability of austenite can lead to martensitic transformation. And martensite cannot dissolve all 

the hydrogen inherited from austenite due to its lower solubility. So, what will happen to this excess 

hydrogen? This is the topic explored in this project.   

Three types of steel with different austenite contents and austenite stability were investigated: 

duplex steel, austenitic steel and bainitic steel. Their deformation induced phase transformation of 

austenite and the corresponding hydrogen desorption behaviour were studied using microscopy, 

diffraction, thermal desorption analysis and microprinting.  

This work has shown that the change in hydrogen desorption behaviour after compression 

strongly depends on the dissolved hydrogen concentration and the extent of phase transformation. 

For duplex steel, containing a large hydrogen concentration (up to 40 ppmw) and no phase 

transformation after compression, there is no noticeable change in hydrogen behaviour according to 

room-temperature desorption and constant-heating-rate thermal desorption analysis. On the other 

hand, the austenitic steel, after compression, revealed a significant burst in the hydrogen desorption 

rate, indicating an overall increase in hydrogen diffusivity. In the case of the bainitic steel, with very 

low saturated hydrogen concentration (less than 0.5 ppmw) and a little phase transformation (less 

than 10%) after compression, a significant reduction in the hydrogen desorption rate was detected 

since the newly strain-induced defects were able to trap almost all the diffusive hydrogen.  
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1 Introduction  

 

1.1 Hydrogen embrittlement in steels  

 

Hydrogen can be introduced into steels during various stages of production and in service. 

Hydrogen was first proven and reported as a cause of embrittlement (reduction of toughness) in steel 

in 1875 by W. H. Johnson [1]. It was found that with the infusion of hydrogen, metals show a significant 

reduction in fracture strength and ductility. Since then, it has become the subject of intensive research. 

However, its exact mechanism remains a subject of debate. Many theories have been proposed to 

explain hydrogen embrittlement. 

The first one, “pressure theory”, was introduced in 1935 by Benneck [2], who suggested that 

atomic hydrogen in metal tends to form molecular hydrogen in voids or microcracks, which exerts an 

internal pressure. This reduces the external stress required for crack initiation and propagation. It was 

also observed that this internal pressure can, by itself, produce cracks without any external forces at 

high fugacity [3]. The pressure theory has been used by many to explain various hydrogen related 

failures in hydrogen-rich environments. However, it is not the best theory to explain embrittlement 

when hydrogen content is as low as several parts per million (ppm). 

Petch’s theory [4][5] of embrittlement was introduced later in 1952, that the absorbed 

hydrogen atoms reduce the surface energy of metal, in turn reducing the stress needed to create new 

surfaces during cracking.  

In-situ transmission electron microscopy (TEM) observation of the enhancement of 

dislocation movements by hydrogen was made in 1984 [6]. This phenomenon was further explored 

by Birnbaum, who later proposed a hydrogen-enhanced localized plasticity (HELP) mechanism [7]. It 

is proposed that hydrogen shields the stress field around dislocations, so they interact with fewer 
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other dislocations or defects. Therefore, they can move more easily, and work hardening becomes 

less likely to happen, leading to local plasticity far below yield stress.  

Another interesting theory is the hydrogen-enhanced strain-induced vacancy (HESIV) model 

[ 8 ][ 9 ]. It is different from most other theories in that it does not consider hydrogen’s direct 

involvement in crack initiation or propagation. It proposes that the main role of hydrogen is to induce 

and agglomerate vacancies in the material during deformation. It is the vacancies, rather than 

hydrogen itself, that is responsible for the embrittlement. Supporting experiments have shown that 

the presence of hydrogen during the later stage of straining and fracture is not required for the 

reduction in toughness and fracture strength, as long as it was present in the early stage of plastic 

straining [10].  

Many other theories exist, for example, cohesion theory [11], hydrides theory [12] etc. 

However, due to the existence of a huge range of various steels with different microstructure and 

strength, it is impossible to perfectly fit one single theory to all types of steels. It is nevertheless 

accepted that only diffusible hydrogen is harmful to toughness [13] and that hydrogen embrittlement 

is a diffusion-controlled process. This makes understanding the movement of hydrogen within steels 

a critical factor for understanding hydrogen embrittlement. 
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1.2 Hydrogen diffusion and trapping 

 

Due to their small size, hydrogen atoms occupy and migrate via interstitial sites in crystalline 

structures. The diffusivity of hydrogen in austenite is much lower than in ferrite, i.e. migration energy 

Em in austenite is higher, as shown in Figure 1.1.  

 
                                                 (a)                                                                                    (b) 

Figure 1.1: Schematic of the difference in migration energy 𝐸𝑚  of hydrogen in austenite (a) and in ferrite (b), 
𝐸𝑚𝛾  = 52.12 kJ mol−1  for 304 austenitic steels and 𝐸𝑚𝛼 = 4.5 kJ mol−1 for 99.99% pure iron 

 

In high purity ferritic steels with minimal defects [14], the diffusivity of hydrogen is:  

𝐷𝛼(m2 s−1) = (5.8 ± 0.1) × 10−8exp (− 4.5×103±200
𝑅𝑇

)                         (Equation 1) 

𝑅: ideal gas constant, 8.314 J kg -1, 𝑇: temperature in K 
 
Katsuta [15] compiled many hydrogen diffusion results for different austenitic steels and gave an 

estimation for hydrogen diffusivity in austenite:  

𝐷𝛾(m2 s−1) = (9.9 ± 0.6) × 10−7exp (− 52.12×103±551
𝑅𝑇

)                       (Equation 2) 

At room temperature (25°C), 𝐷𝛾 = 7.4 x 10-16 m2 s-1 and 𝐷𝛼 = 5.8 x 10-8 m2 s-1. Applying diffusion 

length equation 3, we can see that it takes less than 1 s for hydrogen to diffuse 100 μm in ferrite and 

this same diffusion length will take tens of days in austenite. The solubility of hydrogen, on the other 

hand, is two to three orders of magnitude higher in austenite than in ferrite at ambient conditions. 

 𝑙 = √4𝐷𝑡                                                                 (Equation 3) 

𝑙: diffusion length after diffusing for time t 
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Assuming a constant surface concentration during charging, the concentration depth profile can be 

estimated using finite element simulation or the diffusion equation [16]: 

𝑁(𝑥, 𝑡) = 𝑁(0)erfc ( 𝑥
√4𝐷𝑡

)                                                 (Equation 4) 

𝑁(0): concentration of hydrogen at the charging surface, 𝑁(𝑥, 𝑡): concentration of hydrogen x metres away 
from the charging surface at time t 
 

 

Figure 1.2: Diffusivity of hydrogen in different type of steels [15] [17]  

 

However, the actual diffusion process in steels is a much more complex process. For example, 

the addition of alloying elements can significantly vary the diffusion behaviour and solubility of 

hydrogen. Figure 1.2 compares some of the reported hydrogen diffusivity values in different austenitic 

steels and in pure ferrite. 

Within the lattice, defects can interact with hydrogen atoms and become sites that are more 

energetically favourable for hydrogen to sit in. These sites are call hydrogen ‘traps’. The illustration of 

such energy well is shown in figure 1.3.  Table 1.1 compiles some of the published binding energy 

values of different traps.  
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Figure 1.3: Schematic of a typical hydrogen trap, 𝐸𝑚: Lattice migration energy, 𝐸𝑎: trap’s activation energy, 𝐸𝑏: 
trap’s binding energy, 𝐸𝑠: Saddle point energy (notice: 𝐸𝑠 could be either bigger or smaller than 𝐸𝑚) 

 

Trap site Phase Eb/kJ mol−1 Method 
Single iron-vacancy α 49–78 Diffusion analysis 
Single iron-vacancy α 24–29 First principles calculations 
Cr, Mo or V atom α 26–27 Elastic/electronic calculations 

Mn atom α 11 Elastic/electronic calculations 
Ni atom α -12 Elastic/electronic calculations 
C atom α 3 Magnetic relaxation 
N atom α 13 Magnetic relaxation 
Al atom γ 6 First principles calculation 
Ti atom α 26 Permeability 

grain boundaries α 32 Mechanical analysis 
γ/α interface γ+α 52 Permeability 

Dislocation strain field α 23-27 Diffusion analysis, TDA 
Dislocation core/jogs α 60 Diffusion analysis 

Microvoids α 48 Thermal desorption analysis 
ε-carbide α 65  

Cementite/α interfaces α 11-18 Permeability, TDA 
TiC α 46-116 Permeability 

Fe1.2Ti0.8S2 α 58 Thermal desorption spectroscopy 
V4C3 α 33-35 Thermal desorption analysis 

Coherent M2C (Mo-rich needle) α 11-12 Thermal desorption analysis 
MnS α 72  

MnS/α interfaces α 72 Thermal desorption analysis 
Iron oxide/α interfaces α 51-70 Thermal desorption analysis 

Y2O3/α interfaces α 70 Thermal desorption analysis 
Al2O3/α interfaces α 79 Thermal desorption analysis 

Table 1.1: Published data on binding energies Eb of different trap sites measured by different methods, 
compiled by Prof. Bhadeshia [18] 

 

A trap’s trapping capability depends on its stress field’s interaction with hydrogen [19]. A non-

worked single-phased steel usually has low intrinsic trap density of around 1019 cm-3. Introducing 

lattice defects through, for example cold rolling, can greatly increase (several orders of magnitude) 

trap density. This leads to a remarkable increase in hydrogen content and a decrease in effective 

diffusivity of hydrogen in steels. Taking trapping into account, the apparent diffusivity [20] and 

hydrogen content [21] become: 
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𝐷app =  𝐷𝐿 × [1 + 𝑁𝑇
𝑁𝐿

exp (𝐸𝑏
𝑅𝑇

)]
−1

                                         (Equation 5) 

𝐷𝐿: diffusivity in perfect lattice, 𝑁𝑇: trap number density, 𝑁𝐿: lattice site number density, 𝐸𝑏: binding energy of 
traps 

 

𝐶Total = 𝐶𝐿 + ∑ 𝑍𝑖𝜃𝑖𝑖 𝑁𝑖                                                      (Equation 6) 

𝐶𝐿: hydrogen concentration in perfect lattice, 𝑁𝑖: number density of traps of type i, 𝜃𝑖: percentage fraction of 
traps of type i that are filled with hydrogen, 𝑍𝑖: number of hydrogen atoms trapped at each trap of type i 

 

For simplicity, in most simulations, Z = 1, therefore:  

𝜃𝑖 = 𝐶𝑖
𝑁𝑖

                                                                    (Equation 7) 

𝐶𝑖: hydrogen concentration in traps of type i 

For dislocations and grain boundaries, Ni can be approximated to be [22]:  

𝑁𝐷𝑖𝑠 ≈ 𝜋𝑏2𝜌𝑁𝐿                                                            (Equation 8) 

𝑏: magnitude of the Burger's vector, 𝜌: dislocation density 

𝑁𝐺𝐵 ≈ 𝐿𝐺𝐵𝑏𝑁𝐿                                                           (Equation 9) 

𝐿𝐺𝐵: total length of grain boundaries higher than 2° per unit area 

 

Both trap density and trapping capability increase with cold working [20]. The strain-induced 

increase of hydrogen solubility and reduction in apparent diffusivity can be largely restored by the 

removal of these defects through annealing [23] [24]. Various traps with different trapping capability 

can exist simultaneously in the same material. Taking into account contributions from different traps, 

McNabb and Foster [25] modified Fick’s second law and proposed a dynamic trapping/detrapping 

kinetic model. For traps of type i:  

𝜕𝐶𝐿
𝜕𝑡

+ ∑ 𝜕𝐶𝑖
𝜕𝑡𝑖 = 𝜕2𝐶𝐿

𝜕𝑥2                                                     (Equation 10) 

𝑑𝐶𝑖
𝑑𝑡

= 𝑘𝐶𝐿(1 − 𝜃𝑖) − 𝑝𝐶𝑖                                               (Equation 11) 

The first part of equation 11 describes the trapping process and the second part describes the 

detrapping process, where:  
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𝑘 = 𝑘0exp (− 𝐸𝑠
𝑅𝑇

)                                                    (Equation 12) 

𝑝 = 𝑝0exp (− 𝐸𝑠+𝐸𝑏
𝑅𝑇

)                                                (Equation 13) 

𝐸𝑠 & 𝐸𝑏: as defined in figure 1.3, 𝑘0 & 𝑝0: constants 

Oriani’s local equilibrium model [20] assumes local equilibrium between hydrogen content in lattice 

and in traps during diffusion:  

𝜃𝑖(1−𝜃𝐿)
𝜃𝐿(1−𝜃𝑖) = exp (𝐸𝑏

𝑅𝑇
)                                                 (Equation 14) 

𝜃𝐿: the atomic fraction of lattice sites filled with hydrogen 

Many simulations of hydrogen absorption and desorption are based on these two models. 

From which, thermal desorption analysis (TDA) profiles can be simulated taking into account traps of 

various types. 

Traps are generally divided into two groups according to their trapping power, 

‘weak/reversable traps’ and ‘strong/irreversible traps’. When a hydrogen atom encounters a weak 

trap, it can ‘detrap’ itself relatively easily by thermal or mechanical energy. These detrapped hydrogen 

atoms are diffusible and can lead to embrittlement. However, when a hydrogen atom encounters a 

strong trap, it cannot get out easily by itself unless a substantial amount of thermal energy is provided. 

The hydrogen atoms in these traps are not diffusible, therefore cannot contribute to the 

embrittlement process. Several types of common hydrogen traps are described below. 

1. Dislocation  

A dislocation core is a low energy site for hydrogen atoms to sit in. During slow-rate plastic 

deformation, each moving dislocation can carry the interacted hydrogen atoms with it and therefore 

enhance their effective diffusivity within the lattice [26] [27]. The interaction energy between the 

stress fields of a hydrogen atom and an edge dislocation is [17]:  

𝑊 = 𝐺𝑏(1+𝑣)𝛿𝑉sin𝜗
3𝜋(1−𝑣)𝑟

                                                     (Equation 15) 

G: shear modulus, b: magnitude of the Burger's vector, 𝑣 : Poisson’s ratio,𝛿𝑉 : volume change around the 
hydrogen atom, ≈1.2 ml mol-1 in iron, r & 𝜗: the hydrogen atom’s position coordinates with respect to the 
dislocation 
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In comparison, screw dislocations have no long-range hydrostatic stress field thus their interaction 

with hydrogen is shorter-ranged [28]. As mentioned before, hydrogen can also shield the stress fields 

around dislocations and therefore significantly enhances their movement [6] during plastic 

deformation and enhances the generation of dislocations around a crack tip [29]. This leads to the 

notion of hydrogen-enhanced local plasticity and strain localization. In this project, dislocation density 

is estimated from X-ray diffraction (XRD) spectra using the Williamson-Hall technique [30], which 

corelates the peaks’ width and the micro-strain 𝜀:  

𝐹𝑊𝐻𝑀 × cos(𝜃) ≈ 2 𝜀 sin(𝜃)                                       (Equation 16) 

𝜃: peak position, FWHM: full width half maximum of each diffraction peak 

 From micro-strain 𝜀, dislocation density 𝜌 is estimated:   

𝜌 = 6𝜋 𝜀2

𝑏2                                                            (Equation 17) 

For body-centred-cubic (BCC) ferrite with lattice parameter 𝑎𝛼: 

𝑏 = √3
2

𝑎𝛼                                                              (Equation 18) 

Whereas for face-centred-cubic (FCC) austenite with lattice parameter 𝑎𝛾: 

𝑏 = √2
2

𝑎𝛾                                                              (Equation 19) 

2. Microcrack 

When strain-induced traps were first observed, many believed that the increase in hydrogen 

content is mainly due to the increase in dislocation density. However, this was later proven not to be 

the case. By comparing the changes in dislocation density and trap density after staining and after 

annealing, Oriani pointed out that microcracks play a more important role than dislocations as 

hydrogen traps [20].   
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3. Point defect 

By comparing TDA spectra of deformed and annealed specimens, Nagumo pointed out that 

the enhanced hydrogen absorption due to deformation can be almost completely removed by 

annealing the specimen at as low as 200 ℃, which corresponds to the removal of point defects like 

vacancies and vacancy-carbon pairs rather than dislocations [31]. The same observation was also 

made by Takai [10] and Aoki [32]. 

4. Precipitate 

Precipitates like carbides and nitrides also act as traps for hydrogen. TiC, for example, is well 

known as an irreversible strong hydrogen trap with a reported 𝐸𝑎 value of 86.9 kJ mol-1 [33]. Other 

carbides like NbC and VC can also act as traps and can mitigate the hydrogen induced fracture 

phenomena, though their reported trapping power is not as high as that of TiC [29]. The trapping 

power of such precipitates normally depends on the precipitate/matrix interface coherency and 

precipitate size [34]. For example, NbC and TiC were found to be ineffective in hydrogen trapping in 

Nickel alloys [35] since these precipitates form incoherent interfaces with the matrix, compared to the 

coherent or semi-coherent interfaces in steels which induce elastic strain field.  

4. Grain boundary  

The role of grain boundaries in hydrogen diffusion is unclear. Many different values have been 

reported as their trapping energy in steels. This is not only due to the diverse types and structures of 

grain boundaries exist in steels, but also due to fact that they are segregation sites for different 

impurity and sites for precipitates formation. It is reported that hydrogen tends to segregate to grain 

boundaries [36] [37]. Hydrogen induced cracking also tends to initiate from and grow along grain 

boundaries [38] [39]. On the other hand, it is also reported that hydrogen embrittlement is generally 

suppressed by grain refinement [40] [41]. Therefore, it is still under debate whether increasing the 

grain boundary suppresses or enhances hydrogen embrittlement in steels.  
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To better correlate hydrogen desorption with different traps in a material, it is important to 

characterize its grain size, grain boundary etc. The linear intercept method is used to characterize grain 

size as illustrated in ASTM E112 standard [42]. Mean linear intercept length (�̅�) is: 

𝐿 ̅= 1 / �̅�𝐿                                                                (Equation 20) 

nL: number of grains intercept by a line of 1 mm. �̅�𝐿: mean nL 

(Notice: linear intercept value does not equal the actual average grain diameter; most grains’ full size 
is not displayed on the plane of observation because they are cut at different sections) 

 

Mean grain boundary surface area to volume ratio (𝑆�̅�) is: 

𝑆�̅�= 2 �̅�𝐿 = 2/�̅�                                                          (Equation 21) 

In textured samples, like rolled sheets, these values are found individually for each direction, rolling, 

normal, transverse and the overall �̅�𝐿and �̅� are:  

�̅�𝐿 = √�̅�Rolling ∙ �̅�Normal ∙ �̅�Transverse
3                                     (Equation 22) 

�̅� = √�̅�Rolling ∙ �̅�Normal ∙ �̅�Transverse
3

                                         (Equation 23) 

For a material with multiple phases, the mean grain size of phase A, �̅�𝐿,𝐴 is:  

�̅�𝐴= VA / �̅�𝐿,𝐴                                                            (Equation 24) 

VA: volume fraction of phase A 

For bainitic structure, another critical parameter in hydrogen trapping is the ferrite/austenite 

interface area. Mean linear intercept length from plate’s perpendicular direction (�̅�perpendicular) is 

used to estimate plate thickness, tB [43]: 

�̅�perpendicular = 𝜋
2

𝑡𝐵                                                                (Equation 25) 

The interphase surface area per unit volume, SV is [44]: 

𝑆𝑉 = 𝑉𝐵/𝑡                                                              (Equation 26) 

VB: volume fraction of bainitic ferrite 
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1.3 Hydrogen in austenite  

 

As mentioned before, hydrogen has negligible diffusivity in austenite and much higher 

solubility in austenite than in ferrite. Therefore, many expected austenite to behave like hydrogen 

traps. It has been shown that the hydrogen solubility in martensitic steels increases due to the 

presence of retain austenite [45] and such increase follows a linear relationship with the amount of 

retained austenite [46]. However, it is still debatable whether retained austenite itself or its interfaces 

with martensitic/bainitic ferrite is the main trapping entity [46] [47]. 

However, hydrogen embrittlement also exists in austenitic steels [48]. Hatano [49] charged 

and tensile tested 304 and 316 austenitic stainless steels. Both of the steels exhibited hydrogen 

enhanced strain-induced vacancies (HESIV) formation, and 304 exhibited significant reduction in 

toughness. 316, however, suffered less from HESIV and experienced no reduction in toughness. This 

embrittlement phenomenon has been ascribed to the instability of austenite to martensitic 

transformation. The discrepancy in toughness reduction between 304 and 316 was ascribed to the 

difference in their stack-fault energy (SFE). Martensite is formed via a faulting process which has a 

corresponding SFE. For n number of atomic planes, such SFE,  𝛾SF (J m-2) is [50]: 

𝛾SF = 𝑛𝜌(∆𝐺chem+ 𝐸strain) + 2𝜎int                                   (Equation 27) 

𝜌: atom density in a close-packed plane (mol m-2), ∆𝐺chem : molar chemical free energy difference between 
austenite and martensite, 𝐸strain: molar coherency energy, 𝜎int: austenite/martensite interfacial energy 
 
 
A low γSF value means that martensitic transformation is more likely to happen since little driving 

force is required. γSF in 304 is around 2 mJ m-2, compared with around 30 mJ m-2 for 316. This means 

304 is less stable and it forms martensite easily which is much more susceptible to hydrogen 

embrittlement than austenite. This theory was further explored and supported by Ryu [51] [52], who 

compared γSF, austenite stability and embrittlement properties between TWIP and TRIP steels.  
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As shown in figure 1.4, since martensite formation will create a lot of new surfaces and 

internal stress etc., a critical driving force of around 1000 J mol-1 [53] is required for the transformation 

to take place. This is usually achieved via undercooling ∆𝐺undercooling. However, this driving force can 

also be partially provided by deformation ∆𝐺deformation , and less undercooling will be required 

∆𝐺undercooling′ = ∆𝐺undercooling + ∆𝐺deformation (∆𝐺deformation is negative). This shifts Ms to Ms’. If 

an austenitic material is stable at temperature 𝑇, applying such deformation will induce martensitic 

transformation.  

 

Figure 1.4: Schematic of free energy change during deformation-induced martensitic transformation 

 

On the other hand, it has been shown that hydrogen charging, by itself, can induce martensitic 

transformation in austenitic steels [54] and in retained austenite within martensitic steels [55]. A 

comprehensive study of hydrogen charging’s effects on different austenitic steels by Rozenak [56] 

shows a clear correlation between the austenite stability and the amount of induced martensite. Both 

BCC/body-centered tetragonal (BCT) 𝛼 ’ and hexagonal close packed (HCP) 𝜖  martensite can be 

formed. These martensitic phases do not form straight away, two intermediate hydride phases, HCP 

𝜖’ and FCC Y, are observed first before they transform into martensite [57] [58] [59]. This hydrogen-

induced phase transformation has also been explained using SFE: hydrogen is capable of lowering SFE 

[60]. However, these phase transformations were mostly found in samples charged under very high 

charging current and were more of a surface phenomenon rather than a bulk phase transformation.    
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1.4 Thermal desorption analysis 

TDA is a commonly used technique to determine the hydrogen profile within a sample. By 

heating a sample at constant rate, hydrogen gradually dissociates from different sites and diffuse out 

of the sample. A schematic of the instruments is illustrated here in figure 1.5:  

 

Figure 1.5: Schematic of the TDA set-up used in Cambridge 

 

 A standard He + H gas of known ratio was first used to calibrate the TDA. Different types of 

gas from the tube furnace were injected into the GC column and were accelerated, these gases can 

then be differentiated by the different time of flight for it to reach the detector at the end of the GC 

column, due to the difference in their molecular mass.  TDA provides a spectrum of the desorption 

rate of the hydrogen from the specimen at different temperature. These different peaks on the 

spectrum help to identify hydrogen in various phases and trapping sites and their corresponding 

activation energy [61]. There are two stages in the desorption process: thermal dissociation and lattice 

diffusion. When thermal dissociation is the dominant step, the spectrum will only depend on heating. 

However, when lattice diffusion is the dominant step, the spectrum will also be highly dependent on 

sample size and geometry [29], which is undesired. In order to minimize the effects from lattice 

diffusion, small specimens and slow heating rate were used. In this case, the desorption rate can be 

related to temperature using the Kissinger’s Equation [62]: 

𝑑𝑥
𝑑𝑡

= 𝐴(1 − 𝑥)𝑛exp (− 𝐸𝑎
𝑅𝑇

)                                           (Equation 28) 

𝑥: fraction of hydrogen detrapped at time 𝑡, 𝑛: order of reaction, 𝐸𝑎: activation energy of the trap, A: constant 
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𝐸𝑎 is different for different types of traps. Therefore, their corresponding peak positions on the TDA 

spectrum will also be different. Under constant heating rate, the peak with maximum desorption rate 

will satisfy equation 29 [63]:  

𝑑
𝑑𝑡

(𝑑𝑥
𝑑𝑡

) = 0 = (∅𝐸𝑎
𝑅𝑇2 − 𝐴 exp (− 𝐸𝑎

𝑅𝑇
))                                  (Equation 29) 

∅: heating rate 

The peak temperature TC with maximum desorption rate satisfies: 

∅𝐸𝑎
𝑅𝑇𝐶

2 = 𝐴 exp (− 𝐸𝑎
𝑅𝑇𝐶

)                                                    (Equation 30) 

Taking the logarithm and differentiating with respect to (1/𝑇𝐶) transforms equation 30 into:  

𝑑ln(∅/𝑇𝐶
2)

𝑑(1/𝑇𝐶)
= −𝐸𝑎/𝑅                                                       (Equation 31) 

Equation 31 is commonly applied to find 𝐸𝑎 of various traps. Several TDA runs using different heating 

rate are performed on identical specimens under the same charging condition. A plot of ln(∅/𝑇𝐶
2) 

against (1/𝑇𝐶) is then made, from which the slope is used to determine 𝐸𝑎.  

This setup can also be used to detect the natural degassing process of a specimen at room 

temperature without heating. This was also employed in this project. To better and more accurately 

capture the low temperature peaks (weak/reversible trapping sites), low temperature thermal 

desorption spectroscopy (LTDS) can be used [29], which can start the measurement from 70 K. 

However, in this project, the use of LTDS is not required.  
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1.5 Microprinting 

 

Microprinting, is a good technique to correlate hydrogen distribution with microstructure at 

a microscopic level. Silver bromide is reduced to silver atom when it encounters hydrogen. This is the 

fundamental reaction of the microprinting technique, as shown in equation 32.  

𝐴𝑔+ + 1
2

𝐻2 = 𝐴𝑔0 + 𝐻+                                               (Equation 32) 

Microprinting can be used in two ways: to identify hydrogen-rich sites on a specimen surface, as in 

figure 1.6, and to identify fast diffusion path within a material, as in figure 1.7. The difference is that, 

for the latter, hydrogen is charged from the opposite side and hydrogen needs to diffuse to the 

microprinting surface to be detected. This project mainly employed the former.  

 

Figure 1.6: Illustration of microprinting technique used to identify hydrogen-rich sites 

 

 

Figure 1.7: Illustration of microprinting used to identify fast-diffusion path 

 

However, microprinting can only detect diffusible and weakly-trapped hydrogen on a sample 

surface. To identify stronger trap sites and to detect them underneath the surface or to have a bulk 

3D profile, other visualization methods like tritium autoradiography, neutron tomography (NT) or 

scanning secondary ion mass spectroscopy (SIMS) [64] can be used. 
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2 Experimental method 

 

2.1 Specimen preparation 

 

Three types of austenite-containing steels were used: 2205 duplex stainless steel, 304 

austenitic steel and a Nb-containing bainitic steel. They will simply be referred to as duplex steel, 

austenitic steel and bainitic steel in this report. Their compositions are listed in table 2.1: 

 C Mn Si Cr Mo Nb P S Ni 
duplex 0.017 1.45 0.39 22.61 3.28 0.001 0.018 0.001 5.17 

austenitic 0.055 1.57 0.44 18.47 0.34 0.029 0.02 0.005 8.36 
bainitic 0.21 2.0 1.9 0.54 0.52 0.019 0.0023 0.0007 N/A 

 
Table 2.1: Chemical composition in wt % of the three types of steels used 

 

The duplex steel was received as a hot rolled plate. No further heat treatment was performed. 

Rods of 8 mm in diameter were machined out along the transverse direction of the rolled plate. Each 

rod was then cut into 12-mm-long cylindrical specimens as shown in figure 2.1 (a). 

 
                                                                      (a)                                    (b) 

Figure 2.1: Standard test specimens used 

 

The 304 austenitic steel was received as a cubic block. The block was annealed at 1050℃ for 

30 min then quenched in water. Smaller-sized cylindrical specimens, as shown in figure 2.1 (b), were 

machined out by electrical discharge machining (EDM).  
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The bainitic steel plate was received as-rolled. It was first homogenised at 1200℃ for 48 h in 

an argon-environment furnace. Then, seven cycles of heat treatments were performed to reduce the 

prior austenite grain size in order to maximize the amount of retained austenite. Each cycle is a two-

stage heat treatment as shown in Figure 2.2. Stage I is austenisation at higher temperature and stage 

II is ferrite/pearlite formation. For each cycle, the holding temperature and the time spent at each 

stage is different. These are collected in table 2.2. 

 

 

Figure 2.2: A heat treatment cycle for grain refinement in bainitic steel 
 
 

Cycle no. Stage I 
temperature 

Stage I  
duration 

Stage II 
temperature 

Stage II 
duration 

1&2 930 ℃ 3.5 h 620 ℃ 48 h 
3 900 ℃ 3.5 h 620 ℃ 48 h 
4 900 ℃ 3.5 h 610 ℃ 48 h 
5 870 ℃ 3 h 610 ℃ 37 h 

6&7 860 ℃ 3.5 h 610 ℃ 40 h 
 
Table 2.2: Heat treatment cycles employed for grain refinement for the bainitic steel, the corresponding optical 

microscopic images showing this grain refinement progress are in appendix figure 6.1 

 

The bainitic plate was then machined into long 8 mm diameter cylindrical rods. These rods were then 

austenised at 870℃ for 1.5 h, and isothermally treated at 325℃ for 1 h for bainitic transformation. 

Finally, each rod was cut into 12-mm-long cylindrical specimens as shown in figure 2.1(a). 
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2.2 Hydrogen charging  

 

Four specimens were charged simultaneously as illustrated in figure 2.3. Before charging, each 

specimen was grinded using 800 and 2500 sand paper to achieve a smooth surface. They were then 

spot-welded onto a four-pronged stainless wire holder. Platinum wire was used as the counter 

electrode which curls around the inner wall of the glass beaker, fixed by a Teflon scaffold. The top 

surfaces of each specimen and the stainless-steel wire holder were painted with lacomit to prevent 

electrical contact with the charging solution. 

  

Figure 2.3: Hydrogen charging setup 
 

A 3.5 wt % NaCl + 0.3 wt % NH4SCN in water was used as the charging solution. A constant 

current density of 5 mA cm-2 was applied during charging. For longer charging time conditions, the 

solution was refreshed every two days, and each specimen’s surface was re-grinded with 2500 sand 

paper to remove any compound which could potentially hinder hydrogen charging.  
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2.3 Compression 

 

Compression was applied using an Instron low cycle fatigue machine to induce martensitic 

transformation in the specimens. Crosshead speed of 0.1 mm/s and 0.05 mm/s were used respectively 

for the 8 mm diameter and 4 mm diameter cylindrical samples to achieve a similar strain rate.  Unless 

stated otherwise, most specimens in this project were compressed along their longitudinal directions 

to the machine limit of 95 kN. In this case, compression is used instead of tension to apply strain 

because it is compatible with the cylindrical sample shape which has been used in most of the previous 

TDA work in the group. In addition, it takes shorter time to set up compression tests. Therefore, 

changes in hydrogen desorption due to straining are more likely captured.   

 

2.4 Metallography using optical microscopy  

 

For optical microscopy, each specimen was grinded using 800, 2500 papers and polished with 

6 μm, 3 μm and 1 μm polishing cloth. After being cleaned with distilled water and ethanol, different 

etchants were applied depending on the type of steel:  

Duplex steel: 30 % oxalic acid was used to etch it electrolytically. As shown in figure 2.4, each 

specimen was immersed in the solution. A platinum wire was used as the counter electrode and a 316 

stainless steel pin was used to make electrical contact with the sample surface. A constant potential 

of 3 V was applied for 15 to 20 s. 

Austenitic steel: 70 % nitric acid was used to etch it electrolytically. The same setup in figure 

2.4 was used. A constant potential of 2 V was applied for around 10 s.  

Bainitic steel: etching was done by wiping the sample surface three to four times with a cotton 

cloth soaked with 2 % nital. 
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Figure 2.4: Electrochemical etching setup 

 

2.5 Scanning electron microscopy  

 

Each scanning electron microscopy (SEM) specimen was grinded, polished and etched as 

described in section 2.4. It was then fixed onto an aluminium stub using carbon tape and placed onto 

the SEM sample stage. All images were acquired using the Nova NanoSEM. For both secondary and 

back scattering modes, an emission power of 15 to 20 kV and a spot size of 5.5 were used. EDX analysis 

was also performed.  

 

2.6 X-ray diffraction  

 

Each X-ray diffraction specimen was grinded using 800, 2500 papers and polished with 6 μm 

and 3 μm polishing cloth. It was cleaned with ethanol and then placed flat on a single-crystal silicon 

disk. A Bruker D8 Advance was used to scan 2θ from 38° to 126° with a step size of 0.025°, each step 

detection lasts for 192 s. High Score Plus was used for data fitting and phase fraction analysis. Each 

XRD peak is fitted using a pseudo-Voigt function. The March/Dollase model [65] was employed to fit 

any textured specimen with favoured or unfavoured directions. Unless stated otherwise, for 

compressed samples, each specimen was cut into two halves and the XRD was performed on the 

centre-plane which experiences the most deformation thus transformation across the specimen.  
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2.7 Hydrogen desorption analysis  

 

Immediately after charging, each specimen was grinded with 2500 sand papers and rinsed 

with water and isopropanol. It was then weighed and installed into the tube furnace within the TDA 

setup. 15-min purging using helium carrier gas was applied to remove the air introduced during sample 

installation. Desorption detection usually starts around 20 min after hydrogen charging. Each 

desorption test comprises two parts: room-temperature desorption detection and constant-heating-

rate TDA detection. These parts vary for different tests, as described in table 2.3:  

Test type Room-temperature hydrogen desorption Constant-heating-rate TDA 
As charged 

Effect of compression 
Effect of aging 

5 h 
5 h, compression, then another 2 h 

N/A 

 
50 ℃ h−1, from 25 ℃ to 600 ℃ 

 

Activation energy 
determination 

 
N/A 

50 ℃ h−1, from 25 ℃ to 600 ℃ 
100 ℃ h−1, from 25 ℃ to 600 ℃ 
200 ℃ h−1, from 25 ℃ to 600 ℃ 

 
Table 2.3: Hydrogen desorption detection processes for different types of tests 

 
 

For ‘effect of compression’ tests, after 3 h of detection at room temperature, the test 

specimen was taken out of the TDA setup and compressed. It was then reinserted into the setup and 

purged with helium for another 10 min. This whole process usually took around 15 to 20 min. The 

specimen’s room-temperature desorption was then further detected for another 2 h before the 

‘constant-heating-rate TDA’ started. For ‘effect of aging’ tests, unless stated otherwise, each aged 

specimen was aged for the same amount of time as its charging time. For example, the specimen 

charged for 16 d was also aged for another 16 d before desorption detection.  
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2.8 Microprinting 

 

Thin disks of 2 mm cut from the test rods in figure 2.1 (a) were used for microprinting. The 

backside of each disk was welded with a stainless steel wire, the frontside of the sample was grinded 

and polished to 1 μm and etched as described in section 2.4. Lacomit was used to paint the specimen 

leaving only the frontside exposed (for diffusion path tests, the backside was left exposed). Hydrogen 

can easily diffuse through Lacomit. However, in this case, lacomit can prevent water contact with the 

painted metal surfaces reasonably well thus prevent hydrogen generation via water reduction 

reaction. Each specimen was then charged individually in a similar setup as described in section 2.2. 

After charging, both the paint and the wire were removed. The sample was transferred to the dark 

room. Meanwhile in the dark room, 2 g of ArBr emulsion was placed in a small beaker with 4 ml of 5 

wt % NaNO2 solution. The mixture was stirred and heated on a hotplate maintained at 40℃ for 20 min.  

In the dark room, the sample surface was first covered with the mixed AgBr emulsion via wire 

looping method as shown in Figure 2.5, then Then left for 40 min. After that, the specimens were 

dipped into formalin (40 wt % HCHO) for 3 s to harden the gelatin layer and were immediately 

immersed in a fixing solution (15 wt % Na2S2O3 + 10 wt % NaNO2) for 5 min to remove the unreacted 

AgBr. Finally, the sample surface was rinsed with water and ethanol. SEM was used to examine the 

surface.   

 

Figure 2.5: Wire looping method for applying AgBr emulsion 
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3 Results and Discussion  

 

3.1 Starting material characterisation  

 

3.1.1 Duplex steel  

The microstructure of the duplex steel consists of austenite grains in a matrix of δ ferrite as 

marked in figure 3.1.  

    

 
                                       (a) 

        

            
                                       (b)                                                                                            (c)  

Figure 3.1: Optical microstructure images and normalized (maximum peak as 1) XRD results of the as-received 
duplex stainless steel from different directions: (a) normal direction, (b) rolling direction, (c) transverse 

direction, the corresponding normalized logarithm XRD results are in appendix 6.4 

δ γ 

γ γ 

δ 
δ 
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These austenite grains elongate along both rolling and transverse directions, more along the rolling 

direction. In figure 3.1, significant difference was found among the XRD spectra measured from 

different directions of the steel plate. This is compiled in figure 3.2.  

 

Figure 3.2: Compiled XRD results from three directions of the duplex steel 

 

This difference is due to the texture effect, which resulted from deformation, in this case, hot rolling. 

During deformation, the crystallographic orientations are no longer fully random, grains reorientate 

themselves to accommodate the stress environment. Some crystallographic directions become 

favourably/unfavourably aligned with respect to the straining direction, so the magnitude of their 

corresponding XRD peak will be different for different directions. However, as shown in table 3.1, the 

phase fraction values obtained from XRD are the same when the texture is taken into account.  

 

Direction Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite 
March/Dollase direction 

Normal 0.42 ± 0.03 0.58 ± 0.04 favoured: 121 & 010 favoured: 011 & 010 
Rolling 0.41 ± 0.02 0.59 ± 0.03 favoured: 011 & 010 favoured: 111 & 010 

Transverse 0.41 ± 0.02 0.59 ± 0.03 favoured: 011, unfavoured: 010 favoured: 111, unfavoured: 010 
 

Table 3.1: Phase fraction analysis for different directions of the duplex steel. The corresponding fittings are in 
appendix 6.11 
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A bimodal austenite grain size distribution can be more clearly observed in SEM, as marked in 

figure 3.3. Secondary γ grains are much smaller and unlike primary γ grain, secondary γ grains do not 

preferentially elongate along the rolling direction. This suggests that these grains were formed at 

lower temperature and were most likely formed after hot rolling.  

                                        (a)                                                                                          (b) 

Figure 3.3: SEM images of the duplex steel from transverse direction at different magnification 

 

Using the linear intercept method, and applying equation 20, 23 and 24 from section 2, 

together with the phase fraction results from table 3.1, the mean grain size of primary austenite along 

different direction can be characterized, the details are in appendix 6.23:  

�̅�Rolling = 63.0 ± 10 μm, �̅�Normal = 8.3 ± 0.8 μm, �̅�Transverse = 30.55 ± 10 μm 

 

 

 

 

 

 

 
 

𝛅 
𝛄 

𝛄-2nd 
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3.1.2 Austenitic steel  

 
     

All austenite grains became equiaxed after 30 min annealing at 1050 ℃, as shown in figure 3.4. 

Transgranular elongated features can be seen for direction 2 and 3, as indicated with red arrows. 

(Direction 1, 2 and 3 are arbitrarily defined from the as-received cubic sample) These features were 

later identified as 𝛿 ferrite using SEM-EDX. For direction 1, 𝛿 ferrite grains are not elongated.  

   

  
                                        (a)                                                                                        (b) 

 

 
(c) 

Figure 3.4: (a) –(c) Optical microstructure images and normalized XRD results of the as-annealed austenitic 
steel from three orthogonal directions (a) direction 1,(b) direction 2, (c) direction 3, these are arbitrarily defined 

directions from the as-received cubic sample, the corresponding normalized logarithm XRD results are in 
appendix 6.5  

𝛅 

𝛅 

𝛅 
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Little texture in the austenite was observed from XRD results, as compiled in figure 3.5, where 

no significant difference was found among spectra for different directions.  

 

Figure 3.5: Compiled XRD results from the three directions of the austenitic steel 

 

XRD was also performed on a 4 mm diameter sample from direction 3 for better future comparison 

since most of the later XRD on austenitic steel specimens were performed on 4 mm diameter samples. 

Overall, specimen size does not significantly affect XRD or the phase fraction obtained from it, this is 

shown in table 3.2. However, in normalized logarithm plots, as shown in figure 3.6, due to the higher 

background/intensity ratio in the smaller specimen’s spectrum, some peaks seem reduced. For 

example, γ (400) and α (200) peaks of the 4 mm diameter specimen can barely distinguish themselves 

from the background.  
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Figure 3.6: Comparison of normalized logarithm XRD from direction 3 of as-homogenized austenitic steel 
between a 10 mm side-length square sample and a 4 mm diameter circular sample 

 

 

Direction Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

1 0.09 ± 0.02 0.91 ± 0.05  
 

N/A 
 

 
 

unfavoured: 010 2 0.08 ± 0.01 0.92 ± 0.05 
3 0.07 ± 0.01 0.93 ± 0.05 

3 (4 mm) 0.07 ± 0.01 0.93 ± 0.02 
 
Table 3.2: Phase fraction analysis for different directions of the austenitic steel, the corresponding fittings are 

in appendix 6.12 
 
 

A small amount (less than 0.1) of ferrite is present in this austenitic steel, as shown in table 3.2. This 

is in accordance with other 304-related work [66] and further proves that the elongated features in 

figure 3.4 are ferrite grains. Measurements from different directions give the same phase fraction, as 

expected.  

 

Two typical features of 304 austenitic steel are shown in figure 3.7: annealing twins and 𝛿 

ferrite. Two annealing twins within an austenite grain are indicated by yellow arrows in (a). 𝛿 ferrite 

grains, as indicated by red arrows in (b), are the elongated features in figure 3.4. A small ferrite grain 

was magnified and EDX was performed as shown in (c) and (d). The higher Cr content within the 

feature confirms that it is 𝛿 ferrite. These ferrite grains are attributed to segregation that is present 

after the limited homogenization.  
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   (a)                                                                                         (b) 

  
                                          (c)                                                                                         (d) 

Figure 3.7: SEM images of the austenitic steel: (a): annealing twins inside an austenite grain, (b): delta ferrite, 
(c): magnified image from the dotted blue box in (b), (d): EDX line scan following the green arrow in (c) 

 

From the linear intercept method, by applying equation 20 and 23 from section 2, the grain 

size can be characterized, the details are in appendix 6.24: 

�̅�average = 26.9 ± 2 μm 

 
 
 
 
 
 

 

 

 

 

Annealing twins 
𝛅 

𝛅 
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3.1.3 Bainitic steel 

 

Bainitic ferrite plates are the main constituent of the microstructure of the bainitic steel, as 

shown in figure 3.8. Some blocky retained austenite was also observed, indicted by the yellow arrows. 

This correlates well with the XRD spectrum in figure 3.9 and the phase fraction obtained from it, as 

shown in table 3.3, showing the material contains only around 10 vol% of austenite.  

  
 

                                          (a)                                                                                        (b) 

Figure 3.8: Optical microstructure images of the as-prepared bainitic steel 

 

 

Figure 3.9: Normalized logarithm XRD of the as-prepared bainitic steel  

 

Phase analysis based on XRD was performed:  

 

Direction Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

N/A 0.90 ± 0.02 0.10 ± 0.04 N/A N/A 
 

Table 3.3: Phase fraction analysis for the bainitic steel, the corresponding fittings are in appendix 6.13 

Blocky austenite  

Blocky austenite  
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SEM images in figure 3.10 also show that most of the microstructure consists of bainitic ferrite 

and film austenite, a magnified image of this feature is shown in figure 3.10 (c). Film austenite is the 

retained austenite between bainite plates, enriched in carbon content due to bainitic transformation 

around it and therefore stabilized. Blocky austenite was also observed as marked with yellow arrows 

in (b). A magnified image of a blocky retained austenite grain with smooth surface is in (d).  

     
                                        (a)                                                                                         (b) 

   
                                      (c)                                                                                          (d) 

Figure 3.10: SEM images of the as-prepared bainitic steel. (a) & (b): overviews of microstructure at lower 
magnifications, (c): Bainite plates and film austenite, (d): blocky retained austenite  

Using the linear intercept method and applying equation 25 from section 2, the bainite plate 

thickness 𝑡 can be obtained, the details are in appendix 6.25: 

𝑡 =
2
𝜋

× �̅� = 0.32 ± 0.03 μm 

Further applying equation 26, the ferrite/austenite interphase surface area per unit volume, 𝑆𝐵, was 

found [44]: 

𝑆𝑉 = 𝑉𝐵
𝑡

≈ 2.81 × 106 m-1 

Blocky austenite  

Blocky austenite  
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3.2 Deformation-induced martensitic transformation 

 

3.2.1 Duplex steel 

 

Before Compression: 

                         
                                                                                                                                          (a)                        

After Compression along transverse direction:  

           
                                                                                                                                         (b)  
 

                 
                                     (c)                                                                                                   (d) 
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                                                                                                                                        (e) 

Figure 3.11: The microstructure of a duplex specimen before and after compression. (a) - (d) are images from 
the normal plane, (e) is an image from the transverse plane. (a): before compression, (b) & (e): centre of the 
compressed specimen, (c): bottom of the compressed specimen, (d): mid-way between bottom and centre of 

the compressed specimen 

 

Each specimen was compressed along the transverse direction. The austenite grains 

experienced an overall reduction in the thickness in this direction. This can be seen clearly by 

comparing figure 3.11 (a) with (b). This change indicates that austenite grains experienced plastic 

deformation during compression. However, no other significant change in microstructure was 

observed. Macroscopically, rather than barrelling, duplex steel specimens tend to shear along the 

normal direction during compression, as shown in figure 3.12.  

                                  
                            (a)                                                                                             (b) 

figure 3.12: Cross-sectional image of a duplex steel specimen of 5 mm x 10 mm x 10 mm after compression in 
the transverse direction (a) schematic of the specimen before compression (b) the crystallographic image of the 

cross-section of the specimen after compression (the red plane in (a)) 
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XRD was performed on the centre transverse plane of the deformed sample, i.e. the plane 

marked red in figure 3.11. It is compared with that of the as-received transverse plane in figure 3.13: 

 

Figure 3.13: XRD of the as-received duplex steel before and after compression 

 

Another as-received duplex steel specimen was dipped in liquid nitrogen for 15 min to see if there is 

any change in XRD. This is shown in figure 3.14. Any possible bainitic or martensitic transformation 

will manifest itself by showing an overall reduction in the relative intensity for peaks correspond to 

austenite while an overall increase in the relative intensity for peaks correspond to ferrite.  

 

Figure 3.14: XRD of the as-received duplex steel before and after dipping in liquid nitrogen for 15 min 
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Figure 3.13 and 3.14 show that the XRD spectra changed significantly after compression, but 

nothing significantly changed after dipping in liquid nitrogen. Further quantification, as shown in table 

3.4, indicates that the phase fraction does not change for either compression or liquid nitrogen 

quenching. This suggests no martensitic transformation took place in this duplex steel. 

 

Condition Ferrite 
fraction 

Austenite  
fraction 

Ferrite 
March/Dollase direction 

Austenite 
March/Dollase direction 

As-received 0.38 ± 0.02 0.62 ± 0.04 favoured: 011, unfavoured: 010 favoured: 111 
compression 0.42 ± 0.04 0.58 ± 0.05 favoured: 121, 010 favoured: 011, unfavoured: 010 

Liquid nitrogen 0.40 ± 0.02 0.60 ± 0.04 favoured: 011, unfavoured: 010 favoured: 111 
 

Table 3.4: Phase fraction analysis for the duplex steel after compression and after liquid nitrogen quenching, 
the corresponding fittings are in appendix 6.14 

 
 

SEM was also performed on the compressed specimens. No martensite was identified at the 

centre of the compressed specimen. This further confirms that there is no deformation-induced 

martensitic transformation.  
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3.2.2 Austenitic steel  

 

Compared with figure 3.4, the deformed specimen, as shown in figure 3.15, does not have such 

smooth morphology. This attributes to the formation of slip bands and deformation-induced 

martensite. Slip bands were mostly observed at the less strained region, i.e. bottom of the compressed 

specimen, while martensite was observed at the more strained region. The difference in morphology 

between these two features can be seen at higher magnification by comparing figure 3.16 (a) and (b).  

            

 
                                                                                                                                       (a) 

     

      
                                       (b)                                                                                          (c)  

Figure 3.15: SEM microstructure images and corresponding XRD of an 8 mm diameter austenitic steel specimen 
before and after compression. (a): centre of the compressed specimen; (b): bottom of the compressed 

specimen; (c): mid-way between bottom and centre of the compressed specimen. The corresponding optical 
images are in appendix 6.3  
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                                        (a)                                                                                          (b) 

Figure 3.16: (a): slip bands formed in the lightly deformed region in the austenite specimen; (b): martensite 
formed in the heavily deformed region in the austenite specimen 

 

XRD in figure 3.17 further confirms that compression can induce martensitic transformation 

in austenitic steel. More transformation was found towards the centre of the compressed specimen, 

where greater deformation was experienced.  

 

  

Figure 3.17: Compiled XRD results from figure 3.15 of different sections of a compressed 8 mm diameter 
austenitic specimen, its corresponding 2D normalized logarithm plot is in appendix 6.6 

 

With the same total applied load, 4 mm diameter specimens were, as expected, more 

deformed than 8 mm diameter specimens after compression. 75 - 80 % reduction in length can be 

achieved. Figure 3.18 shows that, for the compressed 4 mm diameter specimen, almost all austenite 

has transformed into martensite in the centre of the specimen.  

Slip band  

Martensite   
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                                      (a)                                                                                            (b) 

Figure 3.18: SEM microstructure images of a compressed 4 mm diameter austenitic steel specimen at different 
magnifications, the corresponding optical images are in appendix 6.3 

 

 

  

Figure 3.19: Compiled XRD results of 4 mm diameter austenitic specimens after compression or after quenching 
in liquid nitrogen, its corresponding 2D normalized logarithm plot is in appendix 6.7 

 

 

 

𝛅 Grain boundary   
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Figure 3.19 shows the difference in the normalized XRD spectra of austenitic steels after being 

dipped in liquid nitrogen or after compression. The phase fraction obtained from it is shown in table 

3.5. These corelate well with the previous SEM and optical images. Little transformation was found 

after dipping the specimen in liquid nitrogen. Compression, on the other hand, induces significant 

martensitic transformation. And the amount of transformation depends on the deformation 

experienced: 4 mm diameter specimens experience more transformation than 8 mm specimens and 

the transformation is more significant towards the centre of each compressed specimen.  

 

Condition Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

8 mm as-homogenized  
4 mm as-homogenized 
4 mm liquid nitrogen 

0.06 ± 0.03 
0.07 ± 0.01 
0.09 ± 0.01 

0.94 ± 0.01 
0.93 ± 0.02 
0.91 ± 0.02 

 
N/A 

 
unfavoured: 010 

8 mm compressed: bottom 
8 mm compressed: mid-way 

8 mm compressed: centre 
4 mm compressed: bottom 
4 mm compressed: centre 

0.18± 0.04 
0.33 ± 0.04 
0.44 ± 0.01 
0.57 ± 0.01 
0.82 ± 0.01 

0.82 ± 0.01 
0.67 ± 0.01 
0.56 ± 0.01 
0.43 ± 0.02 
0.18± 0.03 

 
 

favoured: 121, 010 

 
 

favoured: 011, 
unfavoured: 010 

 
Table 3.5: Phase fraction analysis for 4 mm diameter and 8 mm diameter austenitic steel specimens after 

compression or after liquid nitrogen quenching, the corresponding fittings are in appendix 6.15 
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3.2.3 Bainitic steel 

 

Compared with the smooth surface of the undeformed blocky retained austenite shown in 

figure 3.10 (d), deformation-induced martensite can be seen after compression in figure 3.20. 

Martensite-austenite constituents from partial transformation were also observed, as indicated in 

figure 3.20 (b), where the remaining retained austenite is marked with a red arrow. The difference in 

morphology between transformed and untransformed austenite can be distinguished well.  

  
(a)                                                                                 (b) 

Figure 3.20: Deformation-induced martensite in a compressed bainitic steel specimen. (a): an almost 
completely transformed blocky retained austenite grain (b): a martensite-austenite constituent, partial 

martensitic transformation leaving some untransformed retained austenite 
 

The situation for bainitic steel is similar to that for austenitic steel: liquid nitrogen does not 

induce significant phase transformation, yet compression does. And more martensite is formed 

towards the centre of the compressed specimen. This trend can be seen in figure 3.21 and the 

corresponding phase analysis is in table 3.6.  

Martensite   

Bainitic 
ferrite   

Martensite   Untransformed 
austenite 
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Figure 3.21: Compiled XRD results of bainitic specimens after compression or after quenching in liquid nitrogen  

 

 

Condition Ferrite 
fraction 

Austenite  
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

as-homogenized  
 liquid nitrogen 

0.90 ± 0.02 
0.90 ± 0.01 

0.10 ± 0.04 
0.10 ± 0.03 

 

N/A 
 

N/A 

compressed: bottom 
compressed: mid-way 

compressed: centre 

0.94 ± 0.05 
0.96 ± 0.01 
0.98 ± 0.01 

0.06 ± 0.01 
0.04 ± 0.03 
0.02 ± 0.04 

 
favoured: 121, 011 

 
favoured: 110  

 
Table 3.6: Phase fraction analysis for bainitic steel specimens after compression or after liquid nitrogen 

quenching, the corresponding fittings are in appendix 6.16 (the error range for each condition arises from the 
difference between the actual peaks and their fitting and was calculated by the software. Apart from the as-

homogenized condition, in which case two specimens’ XRD were performed, each condition only has one 
specimen tested)  
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3.3 The effect of hydrogen charging time  

 

3.3.1 Duplex steel  

 

Figure 3.22 and table 3.7 indicate no significant difference among the XRD of specimens 

charged for different times and the phase fraction obtained from them. This suggests that prolonged 

hydrogen charging does not induce any phase transformation in duplex stainless steel. 

 

Figure 3.22: Normalized logarithm XRD plots for duplex steel specimens charged for different times 

 

 

Condition Ferrite 
fraction 

Austenite  
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

as-received 0.41 ± 0.02 0.59 ± 0.03  
favoured: 011,  

unfavoured: 010 

 
favoured: 111, 

unfavoured: 010 
charged 4 d 0.41 ± 0.02 0.41 ± 0.04 

charged 10 d 0.42 ± 0.02 0.58 ± 0.04 
charged 16 d 0.40 ± 0.02 0.60 ± 0.04 

 
Table 3.7: Phase fraction analysis for duplex steel specimens charged for different times, the corresponding 

fittings are in appendix 6.17 
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Figure 3.23 (a) shows a typical room-temperature hydrogen desorption profile: The signal 

initially increases and reaches a maximum within 50 to 80 min, followed by a gradual decrease. The 

gradually decreasing trend is because, as the hydrogen content within the specimen decreases, the 

hydrogen concentration gradient reduces. Therefore, the hydrogen diffusion rate, i.e. the desorption 

rate also decreases, following Fick’s Law.  

  
                                               (a)                                                                                       (b) 

Figure 3.23: (a): detected and extrapolated room-temperature hydrogen desorption profile of a duplex steel 
specimen charged for 1 d, (b): complied room-temperature hydrogen desorption spectra of duplex steel 

specimens charged for different times 

 

However, the initial low desorption rate, starting from almost 0, deviates from this trend. This is due 

to the purging process. Purging largely removes and dilutes the existing hydrogen within the sample 

chamber. This purging effect gradually wears off as more hydrogen desorbs from the test specimen 

and the signal finally becomes stabilized after 50 to 80 min. The actual initial hydrogen desorption rate 

can be estimated by back-extrapolating the stabilized signal using a power law. This is shown as the 

dotted curve in figure 3.23 (a). This extrapolation method was also used to predict any future 

desorption rate at room-temperature. For example, based on the desorption profile of the first 3 h, 

the desorption rate after 10 h can be estimated. This will be demonstrated later for compressed 

specimens. Figure 3.23 (b) compares the room-temperature hydrogen desorption spectra of duplex 

steel specimens charged for different times. No strong correlation between charging time and room-

temperature desorption rate was found in this case.  
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Figure 3.24: Constant-heating-rate TDA of duplex steel specimens charged for different times followed by aging 
at room temperature for 5.5 h 

 

Each constant-heating-rate TDA spectrum contains a significant peak with a high-temperature 

tail. This indicates the existence of another high-temperature peak. This tail most likely arises from 

the irreversible traps within this material. The as-received specimen also contains this high-

temperature peak, in which hydrogen could have been introduced and become trapped during the 

manufacturing and processing stages. Figure 3.24 shows that longer charging time introduces more 

hydrogen into the steel and shifts the main peak toward higher temperatures. This trend is plotted in 

figure 3.25. The peak shift indicates an overall shift of hydrogen to more energetically stable sites. This 

could either be because longer time allows hydrogen to diffuse around to get trapped at stronger trap 

sites or because longer time allows hydrogen to diffuse further into the austenite grains.  

   
(a) (b) 

Figure 3.25: Variation in (a) total hydrogen content (b) peak temperature of constant-heating-rate TDA of 
duplex steel specimens charged for different times 
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Diffusion simulation using MATLAB was attempted, trying to simulate the diffusion profile 

within the material with respect to charging time. A correlation between the diffusion profile and the 

total hydrogen content might then be established to better understand the charging process. In the 

diffusion simulation for duplex steel, it is assumed that the primary austenite grains are the main 

contributors to hydrogen absorption since the solubility of hydrogen in austenite is 2-3 orders of 

magnitude higher than that in ferrite. In this model, it is assumed that grain boundary does not 

contribute significantly as a hydrogen segregation site. It is also assumed that all hydrogen in austenite 

is charged via the 𝛿 ferrite matrix where the diffusivity is much greater. Given the huge difference in 

the diffusivity of hydrogen in ferrite and in austenite, the diffusion time of hydrogen in ferrite matrix 

is insignificant compared with that in austenite. An illustration of this model is in figure 3.26:  

  
                                                        (a)                                                                                    (b) 

           
(c) 

Figure 3.26: (a): a schematic of the duplex steel’s microstructure, (b): schematic of one austenite grain within 
the ferrite matrix, (c): illustration of the hydrogen absorption process during hydrogen charging 

 
After hot rolling, all austenite grains are compressed along the normal direction and elongated 

along the transverse and the normal directions. A typical austenite grain of such is shown in figure 

𝛅 
𝛄 
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3.26 (b). Assuming an elliptical sheet shape for all austenite grains, the actual average grain size along 

different directions can be estimated from the linear intercept values: 

�̅�Rolling,actual ≈ 80 μm 

�̅�Transverse,actual ≈ 40 μm 

�̅�Normal,actual ≈ �̅�Normal ≈ 8 μm 

 

The proof of this estimation is in appendix 6.26. The average linear intercept value along the normal 

direction is the smallest, of around 8 μm. This value is representative of the actual grain size along this 

direction. The grain dimension along the transverse and the normal directions is much smaller than 

that along the rolling direction and the diffusion of hydrogen to the grain centre along these two 

directions also takes much shorter time. Therefore, in this diffusion model, only hydrogen diffusion 

along normal and transverse directions are taken into account. This is illustrated in figure 3.27: 

 

  
                                      (a)                                                                                          (b) 

Figure 3.27: (a): Illustration of hydrogen infusion into an austenite grain during hydrogen charging, (b) is a 2D 
image of (a) from the front viewing plane 

 

Figure 3.27 (b) shows the infusion of hydrogen into an austenite grain from the transverse and the 

normal directions. This study used a simple and standard MATLAB diffusion model which is readily 

available online [67] with editable variables like boundary conditions, specimen dimensions, diffusion 

coefficient, diffusion time etc. This model only considers diffusion in one phase with a single value 

diffusion coefficient. The corresponding hydrogen diffusion simulation results are shown in figure 3.28: 
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                                    (a)                                                                                         (b) 

       
                                     (c)                                                                                             (d) 

      
                                 (e)                                                                                                (f) 

Figure 3.28: Simulated hydrogen concentration profile across an austenite grain after charging for (a) 1 h,      
(b) 3 h, (c) 6 h, (d) 12 h, (e) 24 h, (f) 4 d. ν is the diffusion coefficient with unit of ‘μm2 s-1’ and time (t) is with 

unit of ‘s’ 
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In this diffusion simulation, a constant boundary condition was used, i.e. hydrogen 

concentration remains the same at the ferrite/austenite grain boundary with respect to time. 

Diffusivity values 𝐷𝛾 = 7.4 x 10-16 m2 s-1 and 𝐷𝛼 = 5.8 x 10-8 m2 s-1 from section 2 was employed. In 

this case, no matter what boundary concentration value is used (here a low concentration of 1 ppmw 

was used), the hydrogen concentration profile in austenite will stabilize and will not increase 

significantly only after 12 h of charging, as indicated in figure 3.28. This is rather counterintuitive since 

figure 3.24 and figure 3.25 (a) show that the total hydrogen content kept increasing significantly from 

1 d to 16 d of charging. This model does not take traps into account. Therefore, a possible explanation 

is that the ferrite/austenite interfaces contribute greatly to the diffusion process of hydrogen as a trap 

site. It slows down the infusion of hydrogen from ferrite to austenite. Also, with longer charging time, 

more hydrogen could have accumulated at the ferrite/austenite interface. Therefore, the austenite 

grain’s boundary hydrogen concentration, rather than staying at a constant value, could have 

increased with respect to charging time.  

Further exploration of this diffusion process is beyond the scope of this project, but it is worth 

looking into in the future.  
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3.3.2 Austenitic steel  

 

Figure 3.29 shows that, after charging, the relative intensity of the XRD peaks which 

correspond to the ferrite phase increased. This is most evident in the specimen which has been 

charged for 4 d, as indicated. This suggests that hydrogen charging might have induced martensitic 

transformation in this austenitic steel. This is also supported by the resultant phase fraction analysis 

in table 3.8, where all the charged specimens show increase in ferrite fraction. However, there is no 

direct correlation between the charging time and the amount of transformation. As shown here that, 

the ferrite/martensite phase fraction is lower for the 10-day and 16-day charging conditions than for 

the 4-day condition. This implies that ferrite/martensite transformed back to austenite after longer 

charging time, which is impossible.  Such inconsistency is most likely due to the variation in individual 

specimens’ starting phase fraction.   

 

Figure 3.29: Normalized XRD plots for austenitic steel specimens charged for different times then aged at room 
temperature for 5.5 h 

 

 

Condition Ferrite/martensite 
fraction 

Austenite  
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

as-annealed 0.07 ± 0.01 0.93 ± 0.02  
 

N/A 

 
 

unfavoured: 010 charged 4 d 0.14 ± 0.01 0.86 ± 0.02 
charged 10 d 0.12± 0.01 0.88 ± 0.02 
charged 16 d 0.11 ± 0.01 0.89 ± 0.02 

 
Table 3.8: Phase fraction analysis for austenitic steel specimens charged for different times, the corresponding 

fittings are in appendix 6.18 
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The shape of the room-temperature hydrogen desorption profiles, as shown in figure 3.30, 

resemble those of the duplex steel specimens. No strong variation was found among the room-

temperature hydrogen desorption spectra of specimens charged for different times.  

 

Figure 3.30: Complied room-temperature hydrogen desorption spectra of austenitic steel specimens charged 
for different times 

 

As shown in figure 3.31, each constant-heating-rate TDA spectrum of a charged austenitic 

steel specimen contains 2 peaks: a low-temperature peak at 100 ℃ to 150 ℃ with higher intensity and 

another high-temperature peak at 300 ℃ to 400 ℃.  

 

Figure 3.31: Constant-heating-rate TDA of austenitic steel specimens charged for different times then aged at 
room temperature for 5.5 h 
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Similar to the duplex steel’s case, longer charging time introduces more hydrogen into the austenitic 

steel and shifts the peak toward higher temperature, as demonstrated in figure 3.32: 

    
                                              (a)                                                                                        (b) 

Figure 3.32: Variation in (a) total hydrogen content, (b) peak temperature of constant-heating-rate TDA, of 
austenitic steel specimens charged for different times then aged at room temperature for 5.5 h 

 

1D diffusion simulation was employed. For the austenitic steel specimens, it is assumed that 

the hydrogen infusion is mainly dependent on the bulk diffusion in austenite, i.e. grain boundaries and 

delta ferrite have an insignificant effect. Such a model is illustrated in figure 3.33:    

 

Figure 3.33: Hydrogen infusion into a 4 mm diameter austenite steel specimen during hydrogen charging and 
the corresponding hydrogen concentration profiles (this is only an illustration of how H profile changes during 

hydrogen charging, the actual diffusion length in austenite is only hundreds of microns after weeks of charging) 

 

After fitting different values, the best boundary hydrogen concentration was found to be 230 

ppmw so the simulated total hydrogen content values, calculated from the simulated hydrogen 

concentration profile, best match the experimental total hydrogen content values, obtained from TDA 

measurements. These total hydrogen content values obtained from simulated and experimental 

results are compared in figure 3.35.   
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Simulated hydrogen profiles based on the boundary hydrogen concentration of 230 ppmw are 

shown in figure 3.34: 

   
                                               (a)                                                                                      (b) 

     
                                                (c)                                                                                      (d) 
 

 
(e) 

Figure 3.34: Simulated hydrogen concentration profile in the austenitic steel. (a): charged for 4 d, 10 d and     
16 d, (b): concentration profile across the whole 4 mm diameter specimen after 16 d of charging, (c): charged 
for 4 d (red) then aged for 5.5 h (blue), (d): charged for 10 d (red) then aged for 5.5 h (blue), (e): charged for    

16 d (red) then aged for 5.5 h (blue) 
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All these total hydrogen content values of the charged austenitic steel, either by the TDA 

measurements, or by the diffusion simulation, were obtained from specimens aged for 5.5 h after 

being charged. (5.5 h is the total time for installation, purging and room-temperature hydrogen 

desorption detection) The simulated profiles in figure 3.34 perfectly match the calculated hydrogen 

profiles using equation 4 by applying the same boundary hydrogen concentration. The penetration 

depth of hydrogen increases after longer charging times as shown in (a). The corresponding total 

hydrogen content also increases. For each charging time, after 5.5 h of degassing, the hydrogen profile 

close to the surface drops significantly since now the surface has shifted from a hydrogen-rich 

boundary condition to a hydrogen-free condition. However, the hydrogen profile away from the 

surface does not seem to change much after degassing. This can be seen in figure 3.34 (c)-(e).  

 

Figure 3.35: Comparison between the simulated and experimental total hydrogen content values of austenite 
steel specimens charged for different times then aged at room-temperature for 5.5 h 

The corresponding total hydrogen content of a specimen after charging and degassing can be 

calculated using the simulated hydrogen profile in figure 3.34. Figure 3.35 shows a relatively good 

agreement between the simulated and the experimental results (from TDA). The differences between 

the two arise from the fact that the diffusion simulation only considers bulk diffusion in austenite 

phase, while the actual diffusion process during charging and TDA detection is much more complicated. 

For example, any compound formed during charging on the specimen surface can alter the boundary 

condition, and the δ ferrite phase and its interphase with the austenite matrix can also potentially 

change how hydrogen diffuses within the material.    
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3.3.3 Bainitic steel 

 

There is no significant change in XRD and corresponding phase fraction analysis after 

prolonged charging. This is shown in figure 3.36 and table 3.9. 

 

Figure 3.36: Normalized XRD plots for bainitic steel specimens charged for different times 

 

 

Condition Ferrite/martensite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

as-prepared 0.90 ± 0.02 0.10 ± 0.04  
 

N/A 
 

 
 

N/A 
 

charged 4 d 0.92 ± 0.01 0.08 ± 0.03 
charged 10 d 0.93 ± 0.01 0.07 ± 0.03 
charged 16 d 0.94 ± 0.01 0.06 ± 0.02 

 
Table 3.9: Phase fraction analysis for bainitic steel specimens charged for different times, the corresponding 

fittings are in appendix 6.19 
 

The shape of the room-temperature hydrogen desorption profiles, as shown in figure 3.37, 

resemble that of the other two types of steel, though the desorption rates are much lower. No strong 

variation was found among the room-temperature hydrogen desorption spectra of specimens charged 

for different times, except for the specimen only charged for 1 d, whose desorption rate is lower than 

the others. This is because it has relatively low total hydrogen content, as shown later in figure 3.39.  
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Figure 3.37: Complied room-temperature hydrogen desorption spectra of bainitic steel specimens charged for 
different times 

 

Figure 3.38 shows an increase in hydrogen desorption rate in the as-prepared bainitic steel 

from 320 ℃ to 600 ℃. This is unexpected since 48 h homogenization at 1200 ℃ must have released 

all the hydrogen. This background peak was also observed in all the charged and compressed bainitic 

specimens. Previous work also reported this background peak being observed in other types of steel 

and its nature was discussed in detail by Fielding [47].  

 

Figure 3.38: Typical constant-heating-rate TDA of the as-prepared bainitic steel with no hydrogen charging 
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This background peak does not depend on hydrogen charging conditions. However. it depends on 

specimen’s surface area rather than its weight. Therefore, it most likely results from the surface 

reaction between the TDA carrier gas and the specimen surface. It has been speculated that either 

water or methane gas from the carrier gas could potentially react with the specimen and released 

hydrogen. This background peak has very high magnitude compared with other peaks in this bainitic 

steel, yet it is not always very consistent. Therefore, for this material, only peaks detected below 300 

℃ will be studied, since any possibly existing peak at higher temperature cannot be distinguished from 

this background peak.  

Figure 3.39 shows that, each constant-heating-rate TDA spectrum contains a single peak at 

around 100 ℃ to 120 ℃. A comparison of total hydrogen content and peak temperature among 

bainitic steel specimens with different charging times is shown in figure 3.40.  

 

Figure 3.39: Constant-heating-rate TDA of bainitic steel specimens charged for different times then aged at 
room temperature for 5.5 h 
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                                                   (a)                                                                                                  (b) 

Figure 3.40: Variation in (a) total hydrogen content, (b) peak temperature, of constant-heating-rate TDA of 
bainitic steel specimens charged for different times 

 

The total hydrogen content in the charged bainitic steel specimens is much lower compared 

with the other two types of steel, less than 0.5 ppmw. The total hydrogen content is lower for the 

specimen charged for only 1 day. The other specimens which have been charged for longer time have 

similar amount of total hydrogen contents. Also, little difference of the peak temperature among 

these specimens was found. This could be because the specimens become saturated with hydrogen 

after 4 days of charging under this charging condition. Since bainitic ferrite has much lower solubility 

yet much larger diffusivity, it will soon be saturated with low concentration of hydrogen.  
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3.4 Changes in room-temperature hydrogen desorption and XRD after compression 

 

3.4.1 Duplex steel  

 

There are some minor differences among the XRD spectra in figure 3.41. Their corresponding 

phase analysis in table 3.10, on the other hand, shows no significant variation. This indicates that 

charging time does not affect the phase fraction of the duplex steel after compression. The differences 

among XRD are due to the variation in texture developed in individual specimens during compression.   

 

Figure 3.41: Normalized logarithm XRD plots for duplex steel specimens charged for different times then 
compressed 

 

 

Condition Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite  
March/Dollase direction 

as-received compressed 0.42 ± 0.04 0.58 ± 0.05  
 

favoured: 121, 010 
 

 
favoured: 011, 

unfavoured: 010 
 

charged 4 d compressed 0.39 ± 0.03 0.61 ± 0.01 
charged 10 d compressed 0.40 ± 0.04 0.60 ± 0.03 
charged 16 d compressed 0.42 ± 0.04 0.58 ± 0.05 

 
Table 3.10: Phase fraction analysis for duplex steel specimens charged for different times then compressed, the 

corresponding fittings are in appendix 6.20 
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As shown in figure 3.42, for charged duplex steel specimens, each ‘after-compression’ 

hydrogen desorption profile, to a great extent, follows the extrapolated profile of the corresponding 

‘before-compression’ profile. This is because there is no deformation-induced transformation in this 

material, as shown in section 3.2.1. Therefore, the hydrogen desorption behaviour has no significant 

change after compression. However, some ‘after-compression’ hydrogen desorption profiles are a bit 

lower than extrapolated profiles, as shown in (b) and (c). This is due to the strain-induced defects, 

which act as hydrogen traps, slowing down the diffusion of hydrogen.  

 

  
                                               (a)                                                                                       (b) 

  
                                               (c)                                                                                        (d) 

Figure 3.42: Room-temperature hydrogen desorption spectra before and after compression of the Duplex steel 
specimens charged for different times (a) 1 d (b) 4 d (c) 10 d (d) 16 d 
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3.4.2 Austenitic steel  

 

As shown in figure 3.43 and table 3.11, the situation for the austenitic steel is the same as for 

the duplex steel: minor differences exist among XRD spectra due to variation in texture. Charging time 

does not affect the phase fraction of the austenitic steel after compression, i.e. in this case, hydrogen 

charging has no significant effect on the amount of martensite formed due to compression.  

 

Figure 3.43: Normalized XRD plots for austenitic steel specimens charged for different times then compressed  

 

Condition Ferrite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite 
March/Dollase direction 

as-annealed compressed 0.82 ± 0.01 0.18 ± 0.03  
 

favoured: 121, 010 

 
favoured: 011,  

unfavoured: 010 
charged 4 d compressed 0.85 ± 0.01 0.15 ± 0.03 

charged 10 d compressed 0.83 ± 0.01 0.17 ± 0.04 
charged 16 d compressed 0.82 ± 0.01 0.18 ± 0.04 

 
Table 3.11: Phase fraction analysis for austenitic steel specimens charged for different times then compressed, 

the corresponding fittings are in appendix 6.21 
 

  
(a) (b) 
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                                              (c)                                                                                            (d) 

Figure 3.44: Room-temperature hydrogen desorption spectra before and after compression of austenitic steel 
specimens charged for different times, (a) 4 d, (b) 10 d, (c) 16 d, (d) 16 d then aged for another 16 d before 

compression  

 

All ‘after-compression’ hydrogen desorption profiles are much higher than the extrapolated 

profiles of their corresponding ‘before-compression’ hydrogen desorption profiles. Such a burst in 

hydrogen desorption rate is due to the formation of deformation-induced martensite. After 

compression, most of the austenite transformed into martensite. These newly formed martensite will 

be oversaturated with hydrogen since martensite has much lower hydrogen solubility. The hydrogen 

inherited from austenite will become highly mobile within the lattice and desorb rapidly from the 

specimen.  

Figure 3.44 (c) shows that. This burst is more significant in the specimen which has been 

charged for 16 d since it has the highest total hydrogen content. Figure 3.44 (d) shows a specimen 

which has been charged for 16 d then aged for another 16 d. After aging, no room-temperature 

hydrogen desorption was detected.  This suggests that most of the diffusible hydrogen near the 

sample surface has been desorbed from the specimen already. However, after compression, the 

desorption rate increases sharply. This increase in desorption rate is due to the release of the 

hydrogen atoms which were originally trapped in the austenite phase and the release of the hydrogen 

atoms far from the surface in the bulk austenite lattice which did not have the chance to diffuse out 

during aging. And the newly formed martensite provided an easy path for them to diffuse out. 
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3.4.3 Bainitic steel  

 

As shown in figure 3.45 and table 3.12, the situation for bainitic steel is the same as for the 

other two types of steel: minor differences among XRD spectra yet phase analysis shows that the 

amount of deformation-induced martensite was not affected by charging. 

 

Figure 3.45: Normalized XRD plots for bainitic steel specimens charged for different times then compressed 

 

 

Condition Ferrite/martensite 
fraction 

Austenite 
fraction 

Ferrite 
March/Dollase direction 

Austenite 
March/Dollase direction 

as-prepared compressed 0.98 ± 0.01 0.02 ± 0.04  
 

favoured: 121, 011 

 
 

favoured: 110 charged 4 d compressed 0.97 ± 0.01  0.03 ± 0.04 
charged 10 d compressed 0.97 ± 0.01 0.03 ± 0.04 
charged 16 d compressed 0.97 ± 0.01 0.03 ± 0.04 

 
Table 3.12: Phase fraction analysis for bainitic steel specimens charged for different times then compressed, 

the corresponding fittings are in appendix 6.22 
 
 
 
For every charged bainitic specimen, the room-temperature desorption stops after compression, as 

shown in figure 3.46. This is rather unexpected since this bainitic steel also experiences martensitic 

transformation. So, its room-temperature hydrogen desorption was expected to behave like that of 

the austenitic steel, i.e. increase after compression, rather than decrease. 
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                                              (a)                                                                                          (b) 

   
                                               (c)                                                                                        (d) 

Figure 3.46: Room-temperature hydrogen desorption spectra before and after compression of bainitic steel 
specimens charged for different times, (a) 1 d, (b) 4 d, (c) 10 d, (d) 16 d 

 

The explanation is that the austenite fraction in the bainitic steel is much lower than in the austenitic 

steel. After compression, the maximum martensitic transformation achieved was less than 0.08. The 

newly formed strain-induced defects, dislocations, vacancies etc., act as traps and greatly reduce the 

diffusion of all the diffusible hydrogen. This includes any possible additional diffusible hydrogen from 

martensitic transformation. The total hydrogen content in the bainite steel after charging was very 

low, less than 0.5 ppmw. The capability of these strain-induced traps is much higher than the total 

diffusible hydrogen. Therefore, almost all the diffusible hydrogen becomes trapped, so hydrogen 

desorption was no longer detected after compression. Using equations 16 and 17 from section 2, it 

was found that the dislocation density increased a lot after compression, from around 5×1014 to 

4×1015 m-2. (details in appendix 6.27)  
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3.5 Changes in constant-heating-rate TDA after compression   

 

3.5.1 Duplex steel  

 

Figure 3.47 shows that the compressed and uncompressed duplex steels exhibit similar 

spectra. Deformation has no significant effect on the constant-heat-rate TDA of duplex steel, in 

accordance with the room-temperature desorption results in section 3.4.1. The compiled TDA spectra 

for compressed specimens, as shown in figure 3.48, also show the similar trend as in figure 3.24 for 

uncompressed specimens.  

 

  
                                              (a)                                                                                        (b) 

  
                                              (c)                                                                                        (d) 

Figure 3.47: Comparison of constant-heating-rate TDA spectra between compressed (hollow square) and 
uncompressed (solid square) duplex steel specimens charged for different times, (a) 1 d, (b) 4 d, (c) 10 d,         

(d) 16 d, (e) as-received 
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Figure 3.48: Compiled constant-heating-rate TDA spectra of compressed duplex steel specimens charged for 
different times 

 

And just like for uncompressed specimens, longer charging time increases the total hydrogen 

content and shifts the peak towards higher temperatures, this is demonstrated in figure 3.49:  

  

Figure 3.49: Variation in (a) total hydrogen content, (b) peak temperature of constant-heating-rate TDA, of 
compressed duplex steel specimens charged for different times 
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3.5.2 Austenitic steel  

 

For every compressed austenitic specimen, both the low-temperature peak and the high-

temperature peak were reduced in peak width and were shifted towards lower temperatures of 

around 80 ℃ and 250 ℃ respectively. This is shown in figure 3.50. Such peak shift indicates an overall 

increase in hydrogen diffusivity, which is consistent with the increase in the room-temperature 

desorption after compression. As discussed in section 3.4.2, such increase in hydrogen diffusivity is 

due to the phase transformation of austenite into ferrite which has a much higher hydrogen diffusivity.  

  
                                               (a)                                                                                        (b) 
 

 
(c) 

Figure 3.50: Comparison of constant-heating-rate TDA spectra between compressed (hollow triangle) and 
uncompressed (solid triangle) austenitic steel specimens charged for different times, (a) 4 d, (b) 10 d, (c) 16 d 

 

Figure 3.51 shows the compiled TDA for specimens charged for different times then compressed. Both 

the low-temperature peak and the high-temperature peak do not shift but their magnitudes become 

higher for specimens charged for longer time. This is shown in figure 3.52.  
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Figure 3.51: Compiled constant-heating-rate TDA spectra of compressed austenitic steel specimens charged for 
different times 

    
(a) (b) 

Figure 3.52: Comparison of (a) total hydrogen content, (b) peak temperature of constant-heating-rate TDA, 
between compressed (hollow shapes) and uncompressed (solid shapes) austenitic steel specimens charged for 

different times 

 

Figure 3.52 (a) shows that the hydrogen content values of the compressed specimens are lower than 

those of the uncompressed specimens. This difference arises from the difference in room-

temperature hydrogen desorption. When the burst in room-temperature desorption of the 

compressed specimens is taken into account, the total hydrogen content of the compressed and the 

uncompressed specimens become more or less the same. In this case, it was not possible to calculate 

the dislocation density change due to deformation using the Williamson-Hall technique as we did with 

the bainitic steel. This is because this technique requires the FWHM change measurement of at least 

3 significant XRD peaks of one single phase before and after deformation, which is impossible in this 

case due to the significant phase transformation took place during deformation.  
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3.5.3 Bainitic steel  

 

Figure 3.53 shows that, after compression, each specimen’s peak was moved to a higher 

temperature of around 170 ℃. This new peak likely arises from strain-induced traps. Because the 

hydrogen content in the charged bainitic steel is rather low (less than 0.5 ppmw), these traps have 

enough capacity to trap all the diffusible hydrogen. Therefore, the low-temperature peak originally at 

110 ℃, which corresponds to the diffusible hydrogen, completely shifted to higher temperatures after 

compression. This is consistent with the room-temperature desorption results in section 3.4.3.  The 

shift indicates that the binding energy of the newly generated traps is higher than the binding energy 

of the existing traps in the uncompressed specimens.   

  
                                              (a)                                                                                       (b) 

  
                                              (c)                                                                                       (d) 

Figure 3.53: comparison of constant-heating-rate TDA spectra between compressed (hollow circle) and 
uncompressed (solid circle) bainitic steel specimens charged for different times, (a) 1 d, (b) 4 d, (c) 10 d, (d) 16 d 
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Figure 3.54 compiles the TDA spectra of the bainitic steel specimens charged for different 

times then compressed. It shows the same trend to that of the uncompressed specimens’ spectra in 

figure 3.39, further confirming hydrogen saturation after 4 d of charging. This trend is also shown in 

figure 3.55.  

 

Figure 3.54: Compiled constant-heating-rate TDA spectra of compressed bainitic steel specimens charged for 
different times 

 

  
                                             (a)                                                                                          (b) 

Figure 3.55: Comparison of (a) total hydrogen content, (b) peak temperature of constant-heating-rate TDA, 
between compressed (hollow shapes) and uncompressed (solid shapes) bainitic steel specimens charged for 

different times 
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Figure 3.55 (b) shows that, the total hydrogen content of the compressed specimens is higher 

than that of the uncompressed specimen. There are two reasons for this difference: Firstly, 

compression stopped room-temperature desorption. Therefore, hydrogen which is normally detected 

during room-temperature desorption, is now detected in constant-heating-rate TDA. This is because 

compression-induced traps have higher binding energy and once hydrogen gets trapped within them, 

it can no longer diffuse out easily at room temperature. Secondly, there is an additional amount of 

hydrogen from austenite decomposition in compressed specimens. Such hydrogen might only be 

released at very high temperatures in uncompressed specimens (higher than 350 ℃, therefore not 

detected)  
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3.6 Effect of room-temperature aging  

3.6.1 Duplex steel  

For each charging condition, XRD was first performed on the specimen right after charging. 

XRD was later performed again on the same specimen after it has been aged for the same amount of 

time as charging time. No difference between these two sets of spectra was found. This indicates that 

aging does not affect the microstructure. The result is shown in appendix 6.8.   

As shown in TDA spectra in figure 3.56 and in figure 3.57, after aging, all specimens showed 

reduction in total hydrogen content with the desorption peak shifted towards higher temperature, 

but a significant amount of hydrogen was still left. This is because the lower temperature part of the 

peak corresponds to release of the weakly trapped, i.e. more diffusive hydrogen atoms. These atoms 

desorbed easily during aging.  

  
                                             (a)                                                                                       (b) 

 
(c) 

Figure 3.56: comparison of constant-heating-rate TDA spectra between aged (no line) and non-aged (solid line) 
duplex steel specimens charged for different times, (a) 4 d, (b) 10 d, (c) 16 d 
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(a) (b) 

Figure 3.57: Comparison of (a) total hydrogen content (b) peak temperature of constant-heating-rate TDA 
between aged (dotted line) and non-aged (solid line) duplex steel specimens charged for different times 

 

The same simulation used in section 3.3.1 was employed to simulate the desorption process 

in this duplex steel.  It is assumed that after charging for 4 to 16 d, most hydrogen is in austenite and 

is evenly distrbuted within each grain, as simulated in section 3.3.1. Room-temperature desoprtion 

simulation was performed on the specimen which has been charged for 16 d: with 39.4 ppmw total 

hydrogen content and around 0.6 austenite fraction, hydrogen in each austenite grain in around 66 

ppmw, which is used as our starting condition. Figure 3.58 shows its hydrogen profiles after aging for 

different times.  

 

  
                                      (a)                                                                                              (b) 
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                                       (c)                                                                                                (d) 

Figure 3.58: Simulated hydrogen concentration profile across an austenite grain after charging for 16 d then 
aged for different times, (a) 1 h, (b) 3 h, (c) 12 h, (d) 4 d. ν is the diffusion coefficient with unit of ‘μm2 s-1’ and 

time (t) is with unit of ‘s’ 

 

Most hydrogen will diffuse out after 12-h aging and all hydrogen will be completely gone after 

4-d aging, as shown in figure 3.58 (d). This is very different from our experimental result as shown in 

figure 3.56 and 3.57. Therefore it is speculated that the ferrite/austenite interface plays an important 

role during the hydrogen diffusion process. Not only it affects the charging process as discussed in 

section 3.3.1, this interface can also serve as a barrier during aging, making it difficult for hydrogen to 

escape from austenite grains into the ferrite matrix.  
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3.6.2 Austenitic steel 

 

All XRD spectra, like in the duplex steel, show no change after aging. This is shown in appendix 

6.9.   

Figure 3.59 shows that for charged austenitic specimens, after aging, both the low-

temperature TDA peak and the high-temperature TDA peak changed: The low-temperature peak 

reduces in height and moves towards higher temperature after aging; The high-temperature peak 

does not shift, yet it increases in height after aging. This is most evident in figure 3.59 (b).  

 

  
                                                (a)                                                                                      (b) 

 
          (c) 

Figure 3.59: Comparison of constant-heating-rate TDA spectra between aged (no line) and non-aged (solid line) 
austenitic steel specimens charged for different times, (a) 4 d, (b) 10 d, (c) 16 d 
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The low-temperature peak change is similar to the aging behaviour of the duplex steel and 

the same theory can be applied here to explain this peak change. I.e. the more diffusive hydrogen 

diffuses out during aging. The high-temperature peak change is explained as follows: This peak 

corresponds to the strong/irreversible traps within this material. During aging, although no more new 

hydrogen is being charged into the material, the existing hydrogen atoms’ distribution became more 

homogenised within the specimen, as shown later in the diffusion simulation in figure 3.61. These 

hydrogen atoms, as they diffuse further into the specimen, will encounter more of these traps and 

become trapped in them. And this leads to the increase in these traps’ occupancy thus increase in this 

peak’s height.  

The changes in low-temperature peak and total hydrogen content are compiled in figure 3.60. 

In general, the hydrogen content reduced and peak shifts to higher temperature after aging, as 

expected. However, for specimens charged for 10 d, the total hydrogen content of the specimen with 

aging is higher than that of the specimen without aging. This is impossible and likely results from 

experimental errors during hydrogen charging.  

 

  
                                             (a)                                                                                         (b) 

Figure 3.60: Comparison of (a) total hydrogen content, (b) peak temperature of constant-heating-rate TDA, 
between aged (dotted line) and non-aged (solid line) austenitic steel specimens charged for different times 
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Applying the diffusion model from section 3.3.2, the hydrogen profile after aging can be 

simulated, as shown in figure 3.61. Its corresponding total hydrogen content values were calculated 

and compared with the values obtained from TDA in figure 2.62. 

 

  
                                              (a)                                                                                        (b) 

 
(c) 

 
Figure 3.61: Simulated hydrogen concentration profile for austenitic steel specimens charged then aged for the 

same amount of time, (a) 4 d, (b) 10 d, (c) 16 d, red: without aging, blue: with aging 
 

 

Figure 3.62: Comparison between the simulated and experimental total hydrogen content values of austenite 
steel specimens charged then aged for the same amount of time 
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For each charging with aging condition, the simulated total hydrogen content is significantly 

lower than the experimental result. As mentioned in section 3.3.2, this difference is because the 

simulation only considers diffusion in bulk austenite, other defects like delta ferrite, grain 

boundaries[18][20], however, might act as traps and slow down the hydrogen desorption process.   

 

Figure 3.63 shows that, for specimens charged for 16 d, aging significantly reduces the low-

temperature peak and shifts it towards higher temperature after being compressed. This indicates a 

reduction in the amount of newly formed diffusible hydrogen from martensitic transformation. This is 

because less hydrogen was inherited from austenite since hydrogen in austenite gradually diffuses out 

during aging.  The high-temperature peak, however, was not affected much. This can be interpreted 

as the traps corresponding to this peak have reached their full hydrogen capacity.  

 

Figure 3.63: Constant-heating-rate TDA spectra of austenitic steel specimens charged for 16 d and compressed, 
solid line: compression straight after charging, dotted line: aged for another 16 d before compression   

 
(Notice the difference: here in figure 3.63, the aging is done before compression, the spectra for aging 
after compression are presented below in figure 3.64) 
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Figure 3.64 shows that, for compressed specimens, aging after compression greatly reduces 

the low-temperature peak. This peak corresponds to the newly formed diffusive hydrogen in 

martensite. Due to high diffusivity, the low-temperature peak become almost completely gone after 

aging. This is most evident when figure 3.64 is compared with figure 3.59 and 3.63. The high-

temperature peak, on the other hand, is not affected at all by aging. This is expected since the high-

temperature peak corresponds to irreversible/strong hydrogen traps.  

  
                                               (a)                                                                                        (b) 

 
(c) 

Figure 3.64: Comparison of constant-heating-rate TDA spectra between aged (no line) and non-aged (solid line) 
compressed austenitic steel specimens charged for different times, (a) 4 d, (b) 10 d, (c) 16 d 

 

The activation energy of the traps corresponding to the high temperature peak was found by 

running TDA for austenitic specimens charged for 16 d then compressed using different heating rates: 
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Figure 3.65: Compiled constant-heating-rate TDA spectra of austenitic specimens charged for 16 d then 
compressed, TDA measured at the different heating rates, small-sized triangle: 50 ℃ h-1, medium-sized 

triangle: 100 ℃ h-1, large-sized triangle: 200 ℃ h-1 

 

Heating rate (K h-1) Heating rate, ∅ (K s-1) Tc (℃) Tc (K) 𝟏/𝑻𝑪 𝐥𝐧(∅/𝑻𝑪
𝟐) 

50 0.013889 257.77 530.92 0.001884 -7.3073907 
100 0.027778 265.7976 538.9476 0.001855 -7.0193956 
200 0.055556 289.3572 562.5072 0.001778 -6.7555287 

 
Table 3.13: Peak temperatures from TDA spectra run at different heating rates of austenitic specimens charged 

for 16 d then compressed 
 
 

By plotting 1/𝑇𝐶  against ln(∅/𝑇𝐶
2) from figure 3.65, as compiled in table 3.13, the traps’ activation 

energy Ea is found using equation 31:  

 

Figure 3.66: Plot of 𝟏/𝑻𝑪 against 𝐥𝐧(∅/𝑻𝑪
𝟐) from table 3.13 

 
Slope = − 𝐸𝑎

𝑅
≈ −4827.3, therefore, Ea = 4827.3 x R = 40.13 kJ mol-1 

 

3.6.3 Bainitic Steel 

For non-compressed specimens, almost all hydrogen desorbed during aging. Due to the time 

limit, no aging tests on compressed specimens were performed. XRD was performed, showing no 

change after aging for compressed and non-compressed specimens. This is in appendix 6.10 
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3.7 Other interesting desorption results from side experiments 

 

3.7.1 Sample size effect on bainitic steel  

 

A smaller, ¼-sized specimen was cut from the standard 8 mm dameter specimen after being 

charged and compressed. Its TDA peak is thinner but taller than the standard-sized specimen. And it 

is around 18℃ lower. This is because, in smaller specimens, hydrogen can more easily diffuse to the 

surface and desorb. 

               
                                     (a)                                                                           (b) 

Figure 3.67: Comparison of TDA spectra of compressed bainitic specimens of different size which have been 
both charged for 16 d 
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3.7.2 Strain-induced increase in hydrogen content in bainite  

 

(Notice: up until this point, all specimens were compressed after hydrogen charging.) 

Figure 3.68 shows a significant increase in the hydrogen content when the specimen is 

compressed before hydrogen charging. This is due to strain-induced defects as hydrogen traps which 

increase the material’s overall hydrogen solubility.  

  
                                            (a)                                                                                            (b) 

Figure 3.68: Comparison of TDA spectra of bainitic specimens with different compression conditions which have 
been charged for 10 d  

 

Just like for uncompressed or compression-after-charing specimens, the compressed 

specimens are saturated with hydrogen after 4 d of charging: 

 

Figure 3.69: Comparison of hydrogen content of bainitic specimens compressed then charged for 4 d (red) or  
10 d (blue) 
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Figure 3.70 shows that, for specimens which have been compressed then charged, the total 

hydrogen content kept decreasing and the TDA peak shifted towards higher temperature.  After 1-

month aging, a small peak was still detected, and this peak is in the same position as the peak in 

section 3.5.3. This is because both types of these peaks result from strain-induced defects.  

  
                                         (a)                                                                                             (b) 

 
(c) 

Figure 3.70: (a) & (b) show aging of compressed and charged ¼-sized specimens, (a) constant-heating-rate TDA 
spectra (b) corresponding hydrogen content (c) compares peak position between a ‘compression-before-

charging’ specimen aged for 1 month and a ‘compression-after-charging’ specimen without any aging, both 
specimens are of the same size  
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3.7.3 Hydrogen-enhanced strain-induced defects in bainite 

 

Figure 3.71 shows that for ‘compression-before-charging’ specimens, there is a quite 

noticeable increase in hydrogen content if the specimen was pre-charged with hydrogen before 

compression. This is because the pre-charged hydrogen enhanced the formation of defects during 

compression, which is consistent with the HESIV in section 1.1. This increase in the number of defects 

means there are more traps. Therefore, more hydrogen can stay in the compressed specimen with 

pre-charging.  

 

  
                                                (a)                                                                                     (b) 

Figure 3.71: Comparison of hydrogen content of bainitic specimens compressed then charged between 
specimens with and without hydrogen pre-charging before compression  

 

 

 

 

 

 

 

 

 

 



- 87 - 
 

3.8 Visualization of hydrogen 

 

As explained in section 1.5, all microprinting was performed on the hydrogen charged surfaces to 

identify hydrogen-rich sites unless stated otherwise. 

 

3.8.1 Duplex steel 

 

Figure 3.72 shows that, much of the desorbed hydrogen is from austenite grains. This is 

because austenite has much higher solubility. Individual silver particles colonizing an austenite grain 

can be seen in (c). 

  
                                             (a)                                                                                         (b) 

 
(c) 

Figure: 3.72: Microprinted image of as-received duplex steel after charging for 2 h, (a): overall view at low 
magnification; (b): EDS mapping of Ag from the red dotted box in (a), (c): magnified image of an austenite 

island from (a) 

 

𝛅 
𝛄 
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3.8.2 Austenitic steel  

 

Figure 3.73 shows an even distribution of desorbed hydrogen on the microstructure. Neither 

annealing twin nor grain boundary is a preferential site for hydrogen. This is further confirmed by (b) 

where the EDS line scan across a grain boundary shows no difference in Ag counts. 

 
(a) 

    
                                          (b)                                                                                   (c) 

Figure: 3.73: Microprinted image of as-received austenitic steel after charging for 2 h (a) overall view at low 
magnification; (b)&(c): EDS line scan across a grain boundary  
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Figure 3.74 is rather exciting, since, by only using microprinting, it directly shows that 

dislocations can carry hydrogen atoms with them when they move, confirming dislocations’ ability to 

trap hydrogen atoms. After 2 h charging, the specimen was slightly strained by 5% and microprinted. 

Among the background, preferential deposition of silver particles on slip bands was seen, as shown in 

figure 3.74 (a) and (b). However, if the specimen was aged for another 2 h after charging but before 

compression and microprinting. Then, most hydrogen near sample surface would have diffused out. 

The microprinted surface is now free of background silver atoms but the preferential deposition on 

slip bands is still there and become more distinct, as in (c) and (d). Figure (e) and (f) confirms there is 

no preferential deposition of Ag on slip bands if the deformation took place before hydrogen charging.  

 
 

           
                                       (a)                                                                                            (b)  

         
                                       (c)                                                                                            (d)  
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                                       (e)                                                                                            (f)  

Figure: 3.74: Microprinted image of lightly-strained (5%) austenitic steel charged for 2 h (a)&(b): charged then 
strained without aging; (c)&(d): charged and aged for 2 h, then strained; (e) & (f): strained before charging 

 

Therefore, the results shown in figure 3.74 (c) and (d) have shown dislocations’ ability to drag along 

hydrogen with them during deformation. This is illustrated in figure 3.75: after aging, little hydrogen 

was still left near the specimen surface. However, when it is strained, the moving dislocation drags 

hydrogen with it from the bulk to the specimen surface, where hydrogen reduces the AgBr to Ag atoms, 

which left the preferential Ag deposition along slip bands as shown in figure 3.74 (c) and (d).  

 

Figure: 3.75: Schematic demonstrating how the results from figure 3.74 (c)&(d) were formed  
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3.8.3 Bainitic steel 

 

Like duplex steel, most hydrogen desorbs from austenite grain. However, some silver particles also 

deposited outside the austenite grains. This suggest the ferrite/austenite interface might be another 

hydrogen-rich region, i.e. possible hydrogen trap.  

 
 (a) 

 
                                           (b)                                                                                       (c) 
 

Figure: 3.76: Microprinted image of as-received bainitic steel after charging for 2 h, (a): overall view at low 
magnification, (b): higher magnification image; (c): EDS mapping of Ag from the red dotted box in (b)  

 

 

 

 

 

 

𝛂 
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Fast-diffusion-path tests, as described in section 1.5, were also performed on the bainitic steel, 

as shown in figure 3.77. Surprisingly, the result is the same as in figure 3.76, i.e. silver particles 

preferentially deposit on austenite. This result was also obtained by J. A. Ronevich [68]. This result 

suggests that hydrogen diffuses fastest in austenite, which cannot be true. The explanation given by 

Rinevich for such observation was that hydrogen preferentially diffuse via grain boundary. This 

explanation is not satisfactory since the Ag distribution is uniform on austenite grains rather than 

segregating towards grain boundaries.  

  
 

Figure: 3.77: Microprinted image of as-received bainitic steel after charging for 2 h from the opposite surface 
for fast-diffusion-path tests 

 

After many repeated experiments, it was found that the plastic lacomit protective film, was often 

lifted up and it formed a balloon by the hydrogen diffused and exited from the microprinted side. This 

is a locally high hydrogen concentration environment, in which hydrogen back diffused onto the 

surface austenite on the microprinted side. This is likely to be the actual cause of the counterintuitive 

results in figure 3.77. To avoid this issue, a better set up used by Ichitani [69] can be employed for 

more accurate fast-diffusion-path detection, in which hydrogen is being charged through one side 

while microprinting is being performed simultaneously on the other side. This method avoids the use 

of protective plastic film.  
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4. Conclusions  
 

The change in hydrogen desorption behaviour after compression is different for the three 

different types of steel studied. Such change depends strongly on the dissolved hydrogen 

concentration and the amount of phase transformation within each type of steel: 

1. For the austenitic steel, with high hydrogen concentration (up to around 8 ppmw) and 

significant phase transformation to martensite (up to 82%) after compression, a significant burst in 

hydrogen desorption rate was detected. This is because hydrogen has much higher solubility in 

austenite than in ferrite. After phase transformation, martensite could not dissolve all the hydrogen 

inherited from the decomposed austenite, leaving most of the hydrogen in a highly mobile state in 

the martensite lattice, which then desorbed rapidly out of the specimen. (hydrogen is also much more 

diffusive in martensite than in austenite)   

2. For the bainitic steel, with very low hydrogen concentration (up to around 0.5 ppmw) and 

a little phase transformation to martensite (less than 8%) after compression, a significant reduction in 

hydrogen desorption was detected. This is due to the formation of newly strain-induced defects which 

were capable of trapping not only the existing diffusive hydrogen but also any possible additional 

hydrogen released from the decomposed austenite. These newly formed traps led to an overall 

reduction in hydrogen diffusivity.  

3. For the duplex steel, with no phase transformation, its hydrogen behaviours did not change 

significantly due to compression. The only difference in this case after compression was the possible 

deformation-induced traps. However, either these traps were not as effective as in bainitic steels, or 

their hydrogen trapping capacity was simply too insignificant compared to the total hydrogen charged 

into the material (up to 40 ppmw)  

By comparing the simulation and the experimental results from TDA, it was found that for 

both the austenitic steel and the duplex steel, the ferrite/austenite interfaces seem very likely to be 
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playing a very important role during the diffusion process and may act as an accumulation site for 

hydrogen.  

From the microprinting results, it was found that in both the bainitic steel and the duplex steel, 

austenite grains shows preferential Ag deposition, i.e. hydrogen-rich sites. In the austenitic steel, it 

has been shown that dislocation can drag hydrogen atoms with it during plastic deformation.  

Overall, martensite transformation is something to be avoided in austenite-containing 

materials used in high-hydrogen-concentration environments. It will generate diffusive hydrogen 

which will lead to embrittlement and martensite itself is more prone to embrittlement. Strain-induced 

defects such as dislocations, voids etc. can trap diffusive hydrogen to a certain extent. They are 

particularly effective when hydrogen concentration is low. However, whether these traps are good for 

embrittlement improvement is still debatable since it is unknown if these hydrogen atoms can lead to 

local plasticity thus crack initiation locally at these trap sites.  
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5. Lessons learnt from failed attempts and future work  
 
1. Ammonia thiocyanate (poison) cannot be used for high temperature electrochemical hydrogen 

charging. It reacts with steel rapidly at temperatures over 60 ℃ and forms a black layer which stops 

further charging.  

2. Duplex steel corrodes rapidly during charging at high temperature in saltwater even without using 

poison.  

3. Conventional microprinting should not be applied at elevated temperature. Horikawa [70] has done 

microprinting up to 260 ℃  to reveal high energy traps. Many trials have been done to replicate this 

experiment. But at any temperature above 120 ℃, even only for 1 min, the heat itself can lead to large 

amount of Ag deposition on samples’ surface, even for non-charged samples.  

4. Data processing and report writing takes long time, should have started earlier  

 

Possible Future work:  

This work shows that hydrogen can be released from austenite decomposition into martensite. This 

hydrogen release can be used to help explain the previously reported hydrogen embrittlement 

behaviours in austenitic and TRIP steels which has only been ascribed to the change in overall 

hydrogen diffusivity due to deformation. This allows people to develop a better understanding of the 

embrittlement behaviours of these steels in order to avoid such problem. This work also shows that 

deformation-induced defect can greatly traps diffusive hydrogen. In the future, better correlations 

should be made between these changes in the hydrogen trapping states due to deformation and the 

mechanical properties of the materials. For example, in-situ desorption/mechanical tests can be 

performed to correlate hydrogen release rate with the deformation and the phase transformation 

process. Steels which exhibit hydrogen trap state change due to either phase transformation or trap 

generation (for example, the austenitic steel or the bainitic steel) should be charged with various 

amount of hydrogen and then tested mechanically to better quantify the embrittlement effects of 

phase transformation and its resultant hydrogen state change. This can help us better understand the 

role of phase transformation in the hydrogen embrittlement process and allow us better to mitigate 

the hydrogen embrittlement in these materials.  
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6. Appendix  

6.1 Optical Images 
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Appendix 6.1: Optical microscopic images showing the grain refinement progress. (a) air cooled from 

homogenization, (b)-(h): microstructure after 1st to 7th heat treatment cycle. Bainite can still be observed up til 
5th cycles. After that, only ferrite/pearlite structure is left. ferrite grain size gradually reduced to 15-30 𝜇m.     

(i) & (j):  microstructures after 7th heat treatment cycle at higher magnification. 
 

 

 

 

 

 

 

 

 

 

 

 



  
(a)                                                                                                (b) 

    
(c)                                                                                                    (d) 

  
(e)                                                                                                (f) 

  Appendix 6.2: The optical microstructure images of a compressed 8-mm-diameter austenitic steel specimen. 
(a) & (b): centre of the compressed specimen; (c) & (d): mid-way between bottom and centre of the compressed 

specimen; (e) & (f): bottom of the compressed specimen  
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Appendix 6.3: The optical microstructure images of a compressed 4-mm-diameter austenitic steel specimen at 
different magnifications, correspond to SEM images in figure 3.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.2 XRD plots 

                  
                                       (a)                                                                                              (b)  

  
                                       (c)                                                                                              (d) 

Appendix 6.4: Normalized logarithm plots of as-received duplex stainless steel from different directions: (a) 
normal direction; (b) rolling direction; (c) transverse direction, corresponding to figure 3.1 (a), (b), (c). (d): 

compiled plot of (a), (b) and (c) 

 

 

 

 

 

 

 



  
                                       (a)                                                                                             (b)  

  
(c)                                                                                             (d) 

Appendix 6.5: Normalized logarithm plots of as-homogenized austenitic steel from different directions, (a)  
direction 1; (b) direction 2; (c) direction 3, corresponding to figure 3.4 (a), (b), (c). (d): compiled plot of (a), (b) 

and (c) 

 

 

 

 

 

 

 



 

Appendix 6.6: Normalized logarithm plots of different sections of a compressed 8-mm-diameter austenitic steel 
specimen, corresponding to figure 3.17 

 

 

Appendix 6.7: Normalized logarithm plots of different sections of 4-mm-diameter austenitic specimens after 
compression or after quenching in liquid nitrogen, corresponding to figure 3.19 
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                                              (e)                                                                                       (f) 

Appendix 6.8: Comparison of normalized XRD plots between aged (red) and non-aged (blue) duplex steel 
specimens charged for different amount of time (a)&(b): 4 days, (c)&(d): 10 days, (e)&(f): 16 days. (a),(c),(e) are 

non-compressed specimens, (b),(d),(f) are compressed specimens 
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Appendix 6.9: Comparison of normalized XRD plots between aged (red) and non-aged (blue) austenitic steel 
specimens charged for different amount of time (a)&(b): 4 days, (c)&(d): 10 days, (e)&(f): 16 days. (a),(c),(e) are 

non-compressed specimens, (b),(d),(f) are compressed specimens 
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Appendix 6.10: Comparison of normalized XRD plots between aged (red) and non-aged (blue) bainitic steel 
specimens charged for different amount of time (a)&(b): 4 days, (c)&(d): 10 days, (e)&(f): 16 days. (a),(c),(e) are 

non-compressed specimens, (b),(d),(f) are compressed specimens 

 

 

 

 



6.3 XRD fitting  
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Appendix 6.11: XRD fitting using high-score Plus for Phase fraction analysis for different directions of the 
duplex steel (a) normal direction; (b) rolling direction; (c) transverse direction 
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Appendix 6.12: XRD fitting using high-score Plus for Phase fraction analysis for different directions of the 
austenitic steel (a) direction 1; (b) direction 2; (c) direction 3; (c) direction 3 (smaller specimen) 

 

 

 

 
Appendix 6.13: XRD fitting using high-score Plus for Phase fraction analysis for the as-prepared bainitic steel  
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Appendix 6.14: XRD fitting using high-score Plus for Phase fraction analysis for the duplex steel (a) as-received; 
(b) after compression; (c) after dipping in liquid nitrogen  
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Appendix 6.15: XRD fitting using high-score Plus for Phase fraction analysis for 4-mm-diameter and 8-mm-
diameter austenitic steel specimens after compression or after liquid nitrogen quenching, corresponding to 

table 3.2.2.1, (a) - (d) are for 8-mm-diameter specimens, (e) - (h) are for 4-mm-diameter specimens. (a) & (e): 
as homogenized; (b) & (g): bottom cross section after compression; (c): mid-way cross section after 

compression; (d) & (h): centre cross section after compression; (f): after 15-minute quenching in liquid nitrogen 
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Appendix 6.16: XRD fitting using high-score Plus for Phase fraction analysis for the bainitic steel (a): after 15-
minute quenching in liquid nitrogen; (b) bottom cross section after compression, (c) mid-way cross section after 

compression, (d) centre cross section after compression 
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Appendix 6.17: XRD fitting using high-score Plus for Phase fraction analysis for duplex steel specimens charged 
for different amount of time (a) 4 days; (b) 10 days; (c) 16 days 
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Appendix 6.18: XRD fitting using high-score Plus for Phase fraction analysis for austenitic steel specimens 
charged for different amount of time (a) 4 days; (b) 10 days; (c) 16 days 
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Appendix 6.19: XRD fitting using high-score Plus for Phase fraction analysis for bainitic steel specimens charged 
for different amount of time (a) 4 days; (b) 10 days; (c) 16 days 
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Appendix 6.20: XRD fitting using high-score Plus for Phase fraction analysis for duplex steel specimens charged 
for different amount of time then compressed (a) 4 days; (b) 10 days; (c) 16 days 
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Appendix 6.21: XRD fitting using high-score Plus for Phase fraction analysis for austenitic steel specimens 
charged for different amount of time then compressed (a) 4 days; (b) 10 days; (c) 16 days 
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Appendix 6.22: XRD fitting using high-score Plus for Phase fraction analysis for bainitic steel specimens charged 
for different amount of time then compressed (a) 4 days; (b) 10 days; (c) 16 days 

 

 

Position [°2θ] (Cu K-α12)

40 50 60 70 80 90 100 110 120

Counts

0

500

1000

 E_BS_4days_compressed_exported
ferrite 97(1) %
austenite 2.7(4) %

0

50

-50

100

-100

Position [°2θ] (Cu K-α12)

40 50 60 70 80 90 100 110 120

Counts

0

500

1000  E_BS_10days_compressed_exported
ferrite 97(1) %
austenite 3.5(2) %

0

50

-50

100

-100

Position [°2θ] (Cu K-α12)

40 50 60 70 80 90 100 110 120

Counts

0

500

1000

 E_BS_16days_compressed_exported
ferrite 97(1) %
austenite 3.1(2) %

0

50

-50

100

-100



6.4 Microstructure related calculations 

Pic name direction n Length 𝑙 n Length 𝑙 n Length 𝑙 𝑙 ̅
x10_0004 rolling 6 767.5 75.6 8 767.5 56.7 7 765.5 64.6 65.6 

normal 35 576.0 9.7 44 574.5 7.7 46 575 7.4 8.3 
x10_0005 rolling 7 757.9 64.0 9 759.4 49.9 6 759.9 74.9 62.9 

normal 48 572.6 7.1 44 572.7 7.7 50 572.7 6.8 7.2 
x10_0006 rolling 9 767.5 50.4 7 767.5 64.8 9 765.5 50.3 55.2 

normal 46 574.6 7.4 36 573.5 9.4 42 574.5 8.1 8.3 
(a) 

 
Pic name direction n Length 𝑙 n Length 𝑙 n Length 𝑙 𝑙 ̅
x10_0002 transverse 13 760.0 34.7 14 758.9 32.2 11 760.0 41.0 36.0 

normal 37 570.3 9.1 42 569.3 8.1 39 570.3 8.7 8.6 
x10_0003 transverse 13 762.7 34.8 11 763.7 41.2 13 763.7 34.9 37.0 

normal 42 572.6 8.1 38 572.1 8.9 40 572.2 8.5 8.5 
x10_0004 transverse 15 758.5 30.0 13 757.9 34.6 15 758.5 30.0 31.6 

normal 41 569.3 8.2 35 570.3 9.7 42 569.9 8.1 8.7 
(b) 

 
Pic name direction n Length 𝑙 n Length 𝑙 n Length 𝑙 𝑙 ̅
x10_0006 rolling 5 757.5 87.7 6 758.0 73.1 6 757.6 73.1 78.0 

transverse 16 570.3 20.6 13 569.3 25.4 14 569.8 23.6 23.2 
x10_0007 rolling 8 756.5 54.8 6 759.9 73.3 10 758.5 43.9 57.3 

transverse 13 569.3 25.4 9 569.8 36.7 9 568.3 36.6 32.9 
x10_0008 rolling 8 761.7 55.1 6 761.8 73.5 9 763.2 49.1 59.2 

transverse 16 573.2 20.7 17 571.7 19.5 12 571.6 27.6 22.6 
(c) 

Appendix 6.23: Austenite grain size measurement along different directions for the duplex steel, (a) using 
images from transverse direction, (b) using images from rolling direction, (c) using images from normal 

direction images 

 

Pic name n Length 𝑙 n Length 𝑙 n Length 𝑙 𝑙 ̅
x5_0022 23 573.1 24.9 27 762.7 28.3 39 945.7 24.3 

27.2±2 
x5_0023 19 572.6 30.1 27 763.8 28.3 36 949.5 26.4 
x5_0024 22 569.8 25.9 27 759.5 28.1 33 947.8 28.7 

(a) 

Pic name n  𝑙 n  𝑙 n  𝑙 𝑙 ̅
x10_0005 24 572.6 23.9 25 763.2 30.5 30 953.4 31.8 

27.2±3 
x10_0006 22 572.1 26.0 25 764.2 30.6 38 953.7 25.1 
x10_0007 22 570.3 25.9 29 759.9 26.2 38 948.0 24.9 

(b) 

Pic name n  𝑙 n  𝑙 n  𝑙 𝑙 ̅
x5_0035 18 573.1 31.8 29 763.1 26.3 36 951.4 26.4 

26.3±2 
x5_0036 23 573.2 24.9 28 764.2 27.3 35 951.7 27.2 
x5_0037 23 570.3 24.8 31 760.4 24.5 40 948.1 23.7 

(c) 
 

Appendix 6.24: Austenite grain size measurement along different directions for the austenitic steel, (a) using 
images from direction 3; (b) using images from direction 2; (c) using images from direction 1 

 
 



Pic name n Length 𝑙 n Length 𝑙 n Length 𝑙 𝑙 ̅
X10000_005 16 8.14 0.509 25 11.70 0.468 22 11.83 11.83 

0.50±0.04 
X10000_008 11 5.46 0.496 13 5.79 0.445 12 5.35 5.35 
X10000_009 18 10.69 0.594 17 8.40 0.494 12 6.28 6.28 

 
Appendix 6.25: Bainitic steel plate thickness measurement  

 
 
 

                      
       

lx and ly are the possible interception lines during linear intercept measurements, given that all 
interceptions are made at each x, y value with same probability, then the average lx and ly values will 
be the measured mean line interception values, i.e. 𝑙�̅� ≈ 𝑙T̅ransverse and 𝑙�̅� ≈ 𝑙R̅olling 
 
 

In this case, rshort = 𝑙T̅ransverse,actual ≈ 40 μm and rlong =  𝑙R̅olling,actual ≈ 80 μm 

Using the ellipse equation, 𝑥2

𝑟long2 + 𝑦2

𝑟short2 = 1, and assuming (0,0) to be the ellipse centre point, we 

can find out lx and ly at different x or y value:  

y lx y lx y lx y lx 𝑙�̅� 
0 80 6 76.31514 11 66.81317 16 48  

 
61.49457 

 

1 79.89994 7 74.93998 12 64 17 42.14262 
2 79.59899 8 73.32121 13 60.79474 18 34.87119 
3 79.09488 9 71.44228 14 57.13143 19 24.97999 
4 78.38367 10 69.28203 15 52.91503 20 0 

 

x ly x ly x ly x ly 𝑙�̅� 
0 40 11 38.45777 21 34.04409 31 25.27845  

 
 
 
 

31.09217 
 

1 39.9875 12 38.15757 22 33.40659 32 24 
2 39.94997 13 37.82856 23 32.72614 33 22.60531 
3 39.88734 14 37.46999 24 32 34 21.07131 
4 39.7995 15 37.08099 25 31.22499 35 19.36492 
5 39.68627 16 36.66061 26 30.39737 36 17.4356 
6 39.54744 17 36.20773 27 29.51271 37 15.19868 
7 39.38274 18 35.72114 28 28.56571 38 12.49 
8 39.19184 19 35.19943 29 27.54995 39 8.888194 
9 38.97435 20 34.64102 30 26.45751 40 0 

 

𝑙x̅ = 61.49 μm, it is within the limit of 𝑙R̅olling = 63.0 ± 10 μm and 𝑙y̅ = 31.09 μm, it is within the 
limit of 𝑙T̅ransverse = 30.55 ± 10 μm. Therefore, we can claim that 𝑙R̅olling ,actual and 𝑙N̅ormal,actual 
values are representative of the actual average grain size. 

 
Appendix 6.26: Proof of the  𝑙�̅�𝑜𝑙𝑙𝑖𝑛𝑔 ,𝑎𝑐𝑡𝑢𝑎𝑙  and 𝑙�̅�𝑜𝑟𝑚𝑎𝑙,𝑎𝑐𝑡𝑢𝑎𝑙  values are representative of the actual average 

grain size along different direction and will give the linear interception values obtained earlier  
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Dislocation density before compression: 

Peak Position,2θ FWHM Instrument  
broadening 

real FWHM without 
Instrument broadening 

cosθ 
 

2sinθ 
 

FWHM x cosθ 

α110 44.569 0.281 0.0634 0.2176 0.9253 0.7584 0.2014 
α200 64.766 0.67 0.0708 0.5992 0.8445 1.0712 0.5060 
α112 82.151 0.61 0.0794 0.5306 0.7538 1.3141 0.4000 
α220 98.754 0.72 0.0903 0.6297 0.6511 1.5180 0.4100 
α310 116.04 0.8 0.1108 0.6892 0.5296 1.6965 0.3650 

Plot (FWHM x cosθ) against (2sinθ) gives:  

 
 

The slop of the fitting curve is the estimated micro-strain 𝜀 = 0.1249 % 

The unit cell length from XRD = 2.871907 a, the dislocation density is found to be: 4.75361 x1014 m-2 

 

Dislocation density of the specimen centre after compression: 

Peak Position,2θ FWHM Instrument  
broadening 

real FWHM without 
Instrument broadening 

cosθ 
 

2sinθ 
 

FWHM x cosθ 

α110 44.659 0.298 0.0634 0.2346 0.9250 0.7599 0.2170 
α200 64.818 0.37 0.0708 0.2992 0.8442 1.0719 0.2526 
α112 82.233 0.58 0.0795 0.5005 0.7534 1.3152 0.3771 
α220 98.77 0.87 0.0903 0.7797 0.6510 1.5182 0.5076 
α310 115.97 1.1 0.1107 0.9893 0.5301 1.6958 0.5245 

Plot (FWHM x cosθ) against (2sinθ) gives:  

 
The slop of the fitting curve is the estimated micro-strain 𝜀 = 0.3701 % 

The unit cell length from XRD = 2.871603 a, the dislocation density is found to be: 4.17474 x1015 m-2 

 
Appendix 6.27: Bainitic steel dislocation density estimation before and after compression 

 

  


