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Abstract

The Monte Carlo (MC) method is a class of computational algorithms that
rely on repeated random sampling to simulate complex statistical behaviors
and compute their results. In physics and material science, the MC method is
especially useful for simulating systems with many coupled degrees of
freedom. In this article, the application of MC method on the physical
problems was dealt, by introducing the relationship with thermodynamics
and statistical mechanics. The Wang-Landau algorithm, which is one of the
non-Boltzmann reweighting sampling methods, is known for its efficiency
and wide applicability on various problems. It estimates the density of states
(DOS) of the objective material system by histogram reweighting, and
calculate properties of the system at wide range of temperatures with the
estimated DOS. We developed the program code of the Wang-Landau
algorothm and tested the feasibility of the code with simple models. And we

made a ‘cell gas’ model which deals each cell of structure as a non-



interacting gas. Finally, with the code and the model, we calculated basic

thermodynamic properties of k-carbide.
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Nomenclature

A A certain property of a thermodynamic system
C The specific heat
d The size of brittle particle of the particle

DOS  Density of states

E The total energy of the system
e The entire set of microstates
F The Helmholtz free energy

G The Gibbs free energy

g(E) The density of states at energy level E

H The Hamiltonian of the system

h The external potential

Ji The interaction constant

kg The Boltzmann constant

L The size of one side of the lattice

M The total magnetization

m The size of sample in statistics

N The number of particles of the system, or the number of lattice sites
P The probability



p The pressure of the system

Q The partition function for classical system
S The entropy

T The temperature

T, The critical temperature

U The internal energy

%4 The volume of the system

B 1/kgT

€(o;) The energy of state o;

u The chemical potential

v A microstate

o The standard deviation, or the tensile stress acting on the particle
o; The spin of the lattice site i

T The time

Y The wavefunction of Schrédinger equation

Q(E) The number of states of the system at energy level E

vi



1. Introduction

1.1 Monte Carlo method

“Monte Carlo” (MC) method is a class of computational algorithms that
rely on repeated random sampling to simulate complex statistical behaviors
and compute their results. Thus, MC involves simulation of an objective
system. A large number of different problems, especially mathematical and
physical systems, are simulated this way: multidimensional integrals, the
stock market, phase transitions in materials, radiation damage, space
exploration and many other such problems have all been the subject of MC
simulations.

In physics and materials science, the MC method is especially useful for
simulating systems with many coupled degrees of freedom, such as fluids,
disordered materials, strongly coupled solids, and cellular structures. So, it
tends to be used when it is infeasible to compute an exact result with
deterministic algorithms, and it models phenomena with significant
uncertainty in inputs.

The MC method was attempted in the 1930s by Enrico Fermi while
studying neutron diffusion, but he did not publish anything on it. And again
in the 1940s it was made and used by John von Neumann, Nicholas

Metropolis, and Stanislaw Ulam, in the Manhattan Project — nuclear weapon



development. Ulam and his Manhattan project team used the MC method to
study radiation shielding and neutron penetration. They had most of the
necessary data, but the problem could not be solved with analytical
calculations. Then, they had the idea of making use of random experiments.
The main idea of the MC method was proposed by the “genius” Ulam, who
thought of it while he was convalescing from an illness, and playing solitaire,
so the MC method is similar to playing card games in its random and
statistical nature. The name ‘“Monte Carlo” came from the famous Monte
Carlo Casino.

But actually, its primitive idea had already popped out about 200 years
before Ulam’s thought, by Comte de Buffon. This idea is a famous one in
mathematics history, which is named “Buffon’s needle problem” after the
name of the inventor. Its question is: “Suppose we have a floor made of
parallel strips of wood, each the same width, and we drop a needle onto the
floor. What is the probability that the needle will lie across a line between
two strips?” And in a more mathematical way: “Given a needle of length /
dropped on a plane ruled with parallel lines ¢ units apart, what is the
probability that the needle will cross a line?”” This was the earliest problem in
geometric probability to be solved; it can be solved using integral geometry.
But it can also be solved statistically by a sampling of random throwing

experiments, where, as the number of samples gets bigger, the result of the
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solution gets more accurate. In 1901, Italian mathematician Mario Lazzarini
performed Buffon’s needle experiment, and after 3408 tosses, he gathered all
samples he made and used of the result to calculate the value of m. This is
possible when the length / of needle is shorter than the length ¢ between two
strips. Here, the method of getting m from the sampling of Buffon’s needle
experiment will not be discussed, but the next chapter will discuss this in

another easier way that shows the essence of the MC method well.

References for section 1.1: Newman and Barkema, Ch. 1; Wikipedia:

Monte Carlo method

1.2 Calculation of © with Monte Carlo method

Monte Carlo method is implemented in many ways, but generally follows a

common pattern:

1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the
domain.

3. Perform a deterministic computation on the inputs.

4. Aggregate the results.



Fig. 1. A circle in a square, used to count the number of darts for calculating

Consider a circle in a square of Figure 1. The area of the square is definitely
4, and the area of the circle is w. From this fact, it is possible to calculate the
value of m by “integration by darts”. If we throw darts, roughly uniformly in
the unit square of Figure 1, some darts will be in the circle, and the others
will not. So the darts will be classified into two groups, and the ratio of the
darts in the circle to the darts in the square can be measured. By the
geometric probability this ratio should converge into the value of n/4 as the
number of sample gets bigger, and from this the value of m can be estimated.
Of course, by symmetry, the same process can be done with only a quadrant

of Figure 1.



Here,

(1) the domain of inputs is the square which circumscribes the circle. (2, 3)
And the random inputs are generated and computed by throwing darts many

times, (4) and the results are aggregated for achieving the goal.

To get an accurate approximation, MC simulation should have two
properties from its statistical nature. First, the inputs should be random
enough. If some darts are thrown onto the center of the circle intentionally,
the darts will not be distributed uniformly, and then the estimation of the
result would be not good. Second, the number of inputs should be large
enough. The estimation gets more accurate as the number of darts increases,

and if the darts are thrown for just a few times, the result would be unreliable.

This is the general procedure of the MC method, and is very beneficial
when the direct calculation is difficult. However, for many situations, it has a

potential problem. This will be discussed and solved in the following chapter.

References for section 1.2: Newman and Barkema, Ch. 1; Wikipedia:

Monte Carlo method



2. Theoretical Backgrounds

2.1 Two kinds of sampling strategies of the MC method

2.1.1 Simple Sampling
The pattern 1-4 of chapter 1.2 shows the common procedure of the MC
simulation. However, in the problem of estimating m, the darts are just
“simply” sampled. This means that when each dart is thrown, it has always
equal probability on any part of the square, so the sampling is purely random.
This strategy is called “simple sampling” and it does not matter at all in the
previous m problem, but in many other problems, it does. So it is not

typically used, but sometimes by economists.

2.1.2 Importance sampling
In most cases of MC simulation, sampling is done by “importance

sampling”.



Nile

Fig.2 Measuring the depth of the Nile: a comparison of simple sampling (left) with the
importance sampling (right) [D. Frenkel and B. Smith. Understanding Molecular Simulation.

Academic press]

Figure 2 shows the two methods of averaging the depth of the Nile. In both
cases the cartographer measures the depth with a stick. The left one shows
simple sampling: in this case the cartographer walks around the whole of
Africa to measure the depth, so most of the times he is not in the Nile, and
gets a lot of zeros. For sure, it is not the good way of measuring. The smarter
way of doing it is: find the Nile first. This is putting a bias on sampling. And
then once in the Nile, just stay in the Nile and keep on measuring. By doing
like this, the cartographer still can have some amount of randomness to walk

around in the Nile, so he can get the samples to average, but he is biased so



he keeps on staying in the Nile. This is what the right figure of Fig.2 shows,
and is the main idea of importance sampling.

The typical way of doing importance sampling in MC simulation is the
Metropolis sampling. This will be discussed after we see the relationship

between the thermodynamics and the MC method.

References for section 2.1: Frenkel and Smit, Ch. 2 and 3

2.2 Meeting with thermodynamics and statistical mechanics

2.2.1 Thermodynamics, statistical mechanics and the atomistic simulation

Thermodynamics describes the effects of transfer of heat and of work done
on, or by, the material bodies or the radiation. So it interrelates macroscopic
variables, such as temperature, volume and pressure, which describe the
physical properties of thermodynamic systems — material bodies and
radiation. And these macroscopic physical properties are actually, a
consequence of the microscopic state of the system. In other words, the state
of microscopic elements, such as atoms, molecules, electrons, or some other
particles that consist of the system, determines the macroscopic state of the

system. So, if we observe the change of the microscopic state of the system,



we will be able to predict macroscopic changes also. Then how can we go
from microscopic description to macroscopic behavior? This question is
answered by statistical mechanics. Statistical mechanics describes the
macroscopic state (macrostate) as an average of a group of several
microscopic states (microstates). So it can turn the thermodynamics problem
into a mechanics problem of many bodies.

Meanwhile, when simulation focuses on the consisting particles, such as
atoms, to describe the macroscopic behaviors, it is typically called as the
“atomistic simulation”. One of the frequently used atomistic simulation
methods, the molecular dynamics (MD), describes the change of the
thermodynamic system as the change of positions and velocities of particles
(in classical MD), or the change of the wavefunction of many particles (in
quantum MD), along the time line. So in MD, macroscopic properties such
as energy E and volume V can be calculated by statistical mechanics, as

averages over a dynamic trajectory along time 7 from the simulation:

1 t
E= ?-fo E(t)dt (D

V—1 tV d 2
=7 | v@a @

But this average only includes phenomena which occur over the time scale

of the MD simulation. Thus, to make properties averaged for all possible



phenomena, MD simulation should be done for a very long time. If we only
need this long time average, not the evolution of the system along the time
line, and if some excitations of the system are beyond the time scale of MD,
then it will be more efficient to sample microscopic states that are
statistically significant for the long time averages, from the space of states.

And this can be done by the MC simulation.

2.2.2  Conjugate pairs, ensembles, and ergodicity
In statistical mechanics, each microscopic state has a certain probability to
emerge. Thus, if enough microscopic states are sampled, they will be
sampled according to their probabilities, so they will show some probability
distribution. For sure, the probability distribution for the microscopic system
and its Hamiltonian are related to the macroscopic free energy function. Here,
variables appear in pairs, that we call the “conjugate (variable) pairs”. They
are the couples that appear together in the first Law of thermodynamics:
dU =TdS + (—pdV) + udN + - 3
where U is the energy (internal energy) of the system, T is the temperature,
S is the entropy, p is the pressure, V is the volume, u is the chemical
potential, and N is the number of particles.
The first Law of thermodynamics indicates the net energy flow of the

system, so it shows the change of the internal energy of the system from
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many different contributions. The TdS term is the heat flow, the -pdV
term is the mechanical or volume work, udN term is the chemical work,
and so on. And the conjugate pairs are (T,S),(—p,V), (u,N), .. Each of
them consists of one extensive variable and one intensive variable. Here,
S,V,N are extensive variables, which are scaled with system size, and
T,p,u are intensive variables, which are not. For statistical sampling to
work, one conjugate of each pair must be specified. In other words, either T
or S, por V,and u or N should be fixed. This is because these fixed
variables in the macroscopic condition translate as boundary constraints for
sampling.

It is sometimes easier to use the entropy formulation of the first Law. This
is simply obtained by rearranging the energy formulation:

ds=2qu+2av —Lan + - 4)
T T T

In this formulation, the conjugate pairs are (1/T,U), (p/T,V),(—u/T,N), --.

These boundary constraints determine the “ensemble”. The ensemble is
the collection of all possible microscopic states in which the system can be,
given the thermodynamic (macroscopic) boundary conditions. This ensemble
theory describes a system at equilibrium by probability distribution. There
are three main ensembles in physics:

the micro canonical ensemble, E(E,V,N);

11



the canonical ensemble, E(T,V, N); and
the grand canonical ensemble, E(T,V, 1)

(Here, the variables in parentheses are fixed.)

The micro canonical ensemble has the energy, volume, and number of
particles fixed. For example, the Newtonian dynamics system in a closed box,
which is the basic set of molecular dynamics, meets this condition. The
canonical ensemble releases the constraint of fixed energy, but has volume,
number of particles and temperature fixed. So it allows the control of the
average of energy with temperature. In this case, the Newtonian system in a
box with non-elastic walls, equilibrated at temperature T, meets the
condition. The grand canonical ensemble releases even the constraint of
fixed number of particles, so it should take into account the field that sets the
average number of particles: fixed chemical potential. It can deal with open
systems, such as the surface of a material.

Of course, other ensembles can be made by fixing different variables. For
example, by fixing N,P,T, we can make an ensemble which is called the
“isothermal-isobaric ensemble”.

Then how can we average over the ensemble? It should be done with
correct weights: probabilities that a system is in particular microstates. And
the probability to find the system in some energy level v shows the

Boltzmann distribution, and is given by
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__ exp(=pH,)
Tvee xp(—BH,)

R, (5)

where H, indicates the Hamiltonian of state v, and £ is 1/kgT. And the
denominator of P, is the sum over all states. It is called as the “partition

function” of the distribution:

Q=) exp(~pH,) (6)

VEe

The system does not have a unique energy mean, because it is probabilistic,
so thermodynamic quantities should be defined as expectation values. But in
the thermodynamic limit of infinite system size, the relative fluctuations in
these averages will go to zero.

Also the free energy of the system can be obtained from Q:

F= -%m(@) @)

If thermodynamic boundary conditions are decided, then the Hamiltonian in
B, and Q, which should include all the things that can fluctuate in the
system, can be derived from the relevant Legendre transform of the entropy.

This Legendre transform shifts a function with one of its parameters as an
independent variable, to a new function dependent on a new variable. This
new function is the partial derivative of the original function with respect to
the independent variable. And it becomes the difference between the original

function and the product of the old and new variables.

13



From the energy formulation of (3), the internal energy U depends on S, V,
and N (={N;}). And by Legendre transforms, the Helmholtz free energy and
the Gibbs free energy are obtained, and their independent variables change:

F(T,V,N)=U-TS (8)
G(T,p,N)=U—-TS +pV 9
And from the entropy formulation of (4), the entropy S depends on U, V,

and N. By Legendre transforms, several free entropies are obtained:

A(l VN)—S lU— F 10

T; ) - T - T ( )
1p p G

K(T’T’N) S T T an
1 u 1 7
—V=|=S—=U—-=N 12

L(T'V'T> S TU T (12)

(10) is called the Helmholtz free entropy or the Massieu potential, and (11) is
called the Gibbs free entropy or the Planck potential. From these free
entropies, we can get the relevant Hamiltonians for sampling. For example,
the canonical ensemble is a function of T,V,N, so the Helmholtz free
entropy fits. And the Hamiltonian of the canonical ensemble is obtained from

the Legendre transform from S:
1 1
—ZU=-2(B) > H=E (13)

where E, is the energy of eigenstate v. So the probability and the partition

function become:

14



p = exp(_ﬁEv)

V=g Q=) exp(—pE) (14)

veEe
Meanwhile, the grand canonical ensemble is a function of T,V,u, so the
free entropy of (12) fits. And the Hamiltonian of grand canonical ensemble is

obtained from the Legendre transform from S:

1 U 1
_7U+7N=_7((E)_MN) - H,=E,—uN (15)

So the probability and the partition function become:

_ exp(=B(E, — )
; ,

R Q= exp(=p(E, - V) (16)

VEe

And thermodynamic quantities are averaged over the ensemble. For
example, in the canonical ensemble, the average internal energy of the

system is the expectation value of the energy:

U = (E) = Z P E, = exp(—pBE,) £ o= _0In(Q)

= Seop(BEY T "o 1P

VEe

In summary, constant thermodynamic variables become macroscopic
boundary constraints, and they decide the relevant ensemble. And this
ensemble decides the probability with which the sampling is done over the
ensemble. Thus we can get the average value of thermodynamic quantities.

However, one more concept is needed: the “ergodicity hypothesis” of
thermodynamics. It describes a dynamical system which has the same
behavior averaged over time as averaged over phase space. In other words, if

15



a certain system is “ergodic”, its microstates are equiprobable over a long
period of time. And this means the system will reach all of its states if we
wait long enough. Because we know that the system will reach all its states,
we can just sum over the probability of each state, rather than doing the full
dynamics along the time line. Statistical mechanics can only be applied on

ergodic sytems.

References for section 2.2: Frenkel and Smit, Ch. 2-5; Allen and Tildesley,
Ch.2

2.3 Importance sampling of statistical mechanics

As we discussed in Chapter 2.1, sampling can be done simply or by
importance. The problem of simple sampling arises also in the sampling of
physical systems: we would sample states with high entropy by simple
sampling. For example, the Ising model, that describes magnetic behaviors

with lattice of spins:

H==-)Joo (18)

ij
(The external magnetic field term is omitted)
has the lowest energy when the model is in ferromagnetic state, which
indicates when the spins are all up, or all down. And the average of energy
lies between the lowest energy and the highest energy.

16



Number 4
of

states (b)—, O(E)

Boltzmann distribution
/of energy perturbation

G :
Fig. 3. Number of states of the Ising model and the Boltzmann distribution
As we can see in the Figure 3, when we simply sample this model, states
with high energy such as states near (b), the paramagnetic state with random
spins, would occur more frequently, proportional to the number of states
Q(E). This is because they are more probable when we just randomly
capture states. On the other hand, states near (a), the ferromagnetic state,

would occur seldom. This is clear from

SE) = In Q(E) (19)
kg
and,
dInQ(E) 1 0 20
dE kel (20)

which means that the number of states with a given energy is an increasing

function of an energy. So, that means with simple sampling, states near (a)

17



would almost never picked since there are almost no states.

But to have correct average, states of both cases are equally needed. Even if
states near (b) occur many times in the simulation, they will have little
meaning according to the Boltzmann distribution. Furthermore, when we
want to study the low temperature phenomena, where the model longs to be
ferromagnetic, with all spins aligned, we would almost never end up with
ferromagnetic configuration by simple random picking. So a lot of states will
be sampled in the phase space but the relevant one will never be sampled.

Then how about picking states with a biased probability, to sample relevant
ones? This is done by the importance sampling, as shown in Figure 4. The
most frequently used importance sampling method in physical material
simulation is the Metropolis algorithm. It walks through phase space visiting
each state from the ensemble with a probability proportional to exp(—BE),
rather than picking states randomly and later weighing them by a probability

of Boltzmann distribution.

Random sample Probability weighted sample L\

(=BHy)
(A = X s sh oo py Ay — (M) =34,

Fig. 4. Difference between simple sampling and importance sampling of statistical
mechanics

18




2.3.1 Metropolis algorithm
MC simulation with Metropolis algorithm [Metropolis et al., 1953] starts
with a random starting state, say i. And pick trial state, say j, from i with

some rate W2, j» then accept j with some probability P;_,;. It repeats the

“pick-and-accept(or not)” process until some criterion is satisfied.
Metropolis algorithm has some criteria for picking and accepting, and also
the criteria for appropriate probability distribution.
There are two conditions for generating proper probability distribution. The
first one is “equal a priori probabilities”:
w2, i~ Vl/j(li (21)
where W2, ; 1is the pick rate at which the system choose new states from the
state i. We first have to design mechanism for picking potential moves. And
the second one is the “detailed balance”:
PiPij = PiP;_,; (22)
In the detailed balance condition, P; and P; mean the probability that the
system will be in the state i and j, respectively, And P;_,; and P;_,; mean
the rate at which the system transfer from the state i into the state j, and from
j into i, respectively. The LHS of the detailed balance condition is the

number of times the system goes out of i into j, because it is the

multiplication of the probability that the system is in i with the rate at which

19



the system transfer to j. So the RHS is the number of times the system goes
out of j into i. And when these two are equal, net flow of probability density
would be zero, so we can have a steady state distribution. In other words, if
this detailed balance holds for all pairs of i and j, the resulting probability
distribution will not be changing anymore, if we do a lot of samplings. This
When W2, j and P;,; satisfy the above two criteria, the Metropolis
algorithm will produce an equilibrium distribution.
There are also two conditions to accept a new state and transfer to it. The
first one is:
P_ ;=1 when E; <E; (23)
This means the transfer to the lower energy state is always accepted.
And the second one is,
P.,; = exp(—B(E; — E;)) when E; > E; (24)
(19) is easily derived from the detailed balance condition. In (17), Pj_,; is 1
by (18). And P; = exp(—BE;)/Q, P; = exp(—,BEj)/Q from the Boltzmann
distribution. By rearranging, P,_,; becomes exp (—B (Ej — El))
By putting all the things discussed above together, we can get the procedure
of Metropolis MC simulation:

1. Start with some random configuration.

2. Choose perturbation (trial state) of the system.

20



3. Compute energy for that perturbation.

4. If AE < 0, accept perturbation.

If AE > 0, accept perturbation with probability exp (;Bii), the
Boltzmann factor.
5. Go back to 2
For one’s information, the name “Metropolis” came from the person:

Nicholas Metropolis, who made the algorithm and was one of the main

members of the Manhattan project.

2.3.2 The reweighting method: Umbrella sampling, multi canonical
algorithm and Wang-Landau algorithm
The importance sampling of the MC method is also called as Boltzmann
sampling (BS), since microstates are sampled with Boltzmann weight. This
works well for many systems, however, a lot of other approaches have been
made, since the resolution limit of MC simulations near phase transitions
needs many runs of the simulation to precisely characterize peaks in
response functions such as the specific heat. Great improvements have
become available when it was discovered that entire distribution of
properties, not just mean values, can be useful: for predicting the behavior of

the system at a temperature other than that at which the simulation was
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performed. This is called “reweighting”, and may be done after a simulation
is complete or during the simulation as one of its integral process. By
reweighting method, so-called non-Boltzmann sampling (NBS), which
samples systems with a non-Boltzmann factor, is possible.

The fundamental basis for the reweighting method is to realize that the
properties of the systems will be determined by a distribution function in an
appropriate ensemble. For example, in the canonical ensemble, the
probability to observe a particular state in the Ising ferromagnet with
interaction constant / at temperature T, is proportional to the Boltzmann
weight exp(—KE) where K = J/kgT, the dimensionless coupling. The

probability to observe simultaneously the system with total (dimensionless)

energy E = —) 0,0; and total magnetization M = Y, o; is then:
poEmy = LEM o (kB (25)
A Q(K)

where g(E,M) is the density of states, which is the number of
configurations, with energy E and magnetization M. Like this, the density
of states contains all the information about the systems, and also the effect of
temperature can be included straightforwardly. The reweighting method is
also useful when sampling a part of phase space relevant for a particular
property, or when sampling phase space with a lot of local minima more

efficiently because NBS can make it much easier to get out of local minima.
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In addition, free energy differences throughout the covered range of states
can be easily obtained. This is useful for thermodynamics studies, since these
studies often require the knowledge of free energy changes. [Landau and
Binder, 2009 & Abreu and Escobedo, 2006]

The umbrella sampling is one of the first reweighting methods. Bennet
(1976) tried to estimate free energy difference AF between two systems,
labeled A and B, with partition functions Qa and QOg, by the method called
“overlapping distribution method”, which is often used to calculate free
energy by the MC method. Torrie and Valleau [Torrie and Valleau, 1977]
replaced the Boltzmann factor of the system by a non-negative weight
function m(rN) to modify the Markov chain which is constructed in the
sampling in a way that one samples both the part of configuration space
accessible to system A and the part accessible to system B. By this approach,

the average of samples becomes:

vM=1 exp(_ﬁ(Hv - Hg))Av

A= S0 exp(—B(H, — H))

(26)

which is the result of sampling of AH = H — H° with some Hamiltonian
H?. So this sampling is definitely non-Boltzmann.

After a while, Berg and Neuhaus [Berg and Neuhaus, 1991] suggested
using a distribution which yields a flat histogram. This scheme is known as
the “multi canonical (MUCA) algorithm”, and uses a different choice for
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sampling:

1

b= g(Ey)

(27)

where g(E,) is the density of states (DOS) of the system. This approach
generates states equally distributed on energy, thus provides an overview of
energy. However, on most systems, g(E,) is unknown. There have been
many solutions to it, and Wang and Landau (2001) offered a way to obtain
the DOS during the simulation. In this “Wang-Landau algorithm”, the
generation of states does not depend on the temperature term S, so the
average values of every thermodynamic variable can be calculated for every
temperature.

The framework of Wang-Landau algorithm is a random walk in energy
space with a flat histogram. [Wang and Landau, 2001a, 2001b. & Landau et
al., 2004] The classical partition function can be written either as a sum over
all states or a sum over all energy levels, so the partition function of (6) can

be written:

Q=) exp(—fH) = ) gE)exp(=fE)  (28)

VEe E

And we begin Wang-Landau algorithm with simple guess for the DOS,

usually g(E) = 1, and improve it following the procedure:
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1. Set g(E) =1 for all energy levels, and choose a modification factor
f.eg fo=e'

2. Start with some configuration

3. Set the histogram h(E) = 0 for all energy levels

4. Choose perturbation(trial state) of the system

5. Compute energy for the perturbation

6. Calculate the ratio of the DOS:

_ g(Ey)
7 9(E>)

which results if the system perturbs, and where E; is the energy of
present state, and E, is the energy of trial state
7. If n = 1, accept perturbation
If n < 1, accept the perturbation with probability 1
8. Set g(Epresent) = 9(Epresent) * > N(Epresent) = h(Epresent) + 1
9. If the histogram is not ‘flat’, go to 3
If the histogram is ‘flat’, decrease f,e.g. fh41 = \/Tn, and goto 3
10. Repeat steps 3-9 until f = fina~ exp(1078) = 1.000 000 01

11. Calculate properties using the final resultant DOS g(E)

As we can see in the step 5-6, the probability of accepting perturbation is:
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_(9(E1) )
P(E —>E)=m1n< ,1 29
1 2 g(Ez) ( )
This is from the detailed balance of the Wang-Landau algorithm:
1
P(Ey » E3) = ——=P(E; - E1) (30)

g(Ey) 9(E3)

Where 1/g(E,) is the probability at the energy level E; and P(E; — E,)
is the transition probability from E; to E,. Since the probabilities at all
energy levels are reciprocal to the relevant DOS of them, if some energy
levels are less visited than others, the probability to visit these energy levels
is higher than frequently visited energy levels. Thus all energies can be
almost equally visited, and this is checked by the histogram’s flatness.
However, a perfectly flat histogram cannot be achieved, so we should set
some criterion. Typically this is when the minimum entry is ~ 80% of the

mean value. In the early stages, the detailed balance is not satisfied, but as

f — 1, itis recovered.

2.3.3 A practical problem: random number generation

The MC method needs real random numbers, but “real random” is not
possible in computers. So, we generate pseudo random numbers by
computing and use them in MC simulation. A definition of good random

number generator depends on the application, but there are some criteria:
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periodicity, uniformity, consistency with the laws of statistics, and non-
correlativity. We can test these by simple tests.

In the sampling of physical systems, random numbers are used to make the
probabilistic decision. The criteria of all sampling methods accept trial
perturbation with some probability, and this is done by making random
numbers: when the generated random number is smaller than the value of
probability, then we are in the probability, thus accept the perturbation. On
the other hand, if the generated number is bigger than the probability, then

we are outside of it, thus do not accept the perturbation.

References for section 2.3: Frenkel and Smit, Ch. 3 and 5; Newman and

Barkema, Ch. 2; Landau and Binder, Ch 2, 4, and 7

2.4 Analyzing results

2.4.1 Obtaining results

What we get after the Metropolis MC simulation is a trajectory-like
perturbation of some property along the increasing number of sampling,
which is called, by convention, the “MC time”. This is not the physical time
of the system, but the number of sampling by MC iteration, which tells the
relative duration time of simulation. One MC iteration gets one sample of the

system, so the MC time is also called as MC step or MC sweep (MCS).
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The result perturbation is averaged over to get correct thermodynamic
averages. Figure 5 shows a typical result of Metropolis MC simulation.
Practically, people often cut off the first part (part (a) of Figure 5) and
remove it, since the simulation start with a random state and may be far away
from the average energy state. Thus, by cutting that off and sampling only
part (b), which is the part after the system has relaxed towards the

equilibrium, we can get much faster relaxation of the average.

Cd

property 1

(@) «<—— (b)

MC time

Fig. 5. The graph of a typical Metropolis MC simulation result as a function of MC time

The Wang-Landau MC simulation makes a relative density of states of the
system. And this can be rescaled to the absolute one by the total number of

possible states or the number of ground states.
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Fig. 6. The resultant DOS by Wang-Landau algorithm for 2D Ising model, with 32x32 and

50x50 lattices
[Wang and Landau, 2001]

2.4.2 Detecting phase transitions

We detect phase transitions by looking at physical properties, just like for a

real system. The energy of the system is discontinuous at first order

transitions, but not at second order transitions. The concentration is also

discontinuous at first order transitions, when we work at constant chemical

potential. Another thing to track is the specific heat of the system. Specific

heat is infinite at first order transitions. Actually, specific heat is the

fluctuation of the energy; the measure of how much the energy of the system
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fluctuates around the average:

10U\ 1 ((E?)—(E)?

So, this property can be obtained from the energy distribution. In addition,

it has log-like infinite singularity for second order transitions.
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Fig. 7. Schematic view of the change of the free energy and the (internal) energy of the
system undergoing a first order transition (left) and a second order transition (right)
[Landau and Binder, 2009]

2.4.3 Evaluation of the accuracy

One of attractive aspects of the MC simulation is that it is a simulation
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method with almost no approximations in its approach. So the MC
simulation can give solutions as accurately as we want, or as we can afford.
Then, how can we measure how good is the MC sampling to get properties
of ensemble? To answer this question, we should know from where the
accuracy comes.

Of course, the Hamiltonian of the model of the system should be correct
and accurate. And once it is decided, the error comes from its finite samples,
in other words its finite time, and from its finite size, in other words its
periodic boundaries. Here, we discuss only for the error on quantities that are
in the microscopic states thus able to average, like volume, energy,
concentration, and so on, but not for ones that are not, like specific heat, free
energy, entropy, and so on. The latter quantities can be evaluated indirectly
from the former ones. And we introduce some terminologies from statistics:

A: True average of some property A from the true distribution of the
ensemble (or the population)

(A): Average collected in sampling

Og4ist: Standard deviation A from the true distribution

04y Standard deviation of A from the sampled distribution

m: sample size

How different are (A) with A? The property A fluctuates with some

spread around the true average A.
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Fig. 8. The distribution of some property A around its true average.

Thus A shows some distribution and has standard deviation og;q. If A
is the energy of the system, then o,;; Wwill be the specific heat. And if we
take finite samples from this distribution of A, we will not get A but some

other average, (A). If samples are uncorrelated:

Ok (A% —(4)?
m

02, = ()= D)7 = —

(32)
from the knowledge of statistics. So, if we know m, then we can estimate
the error. And the simulation has all these quantities in it. This is true unless
samples are correlated, in other words, if samples are really picked randomly
from the ensemble.

However, samples are correlated. For instance, the states in the Markov
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chain of a Metropolis MC simulation are not independent. State is obtained
from previous state through some procedure of perturbation. When the
system tries to perturb with very high energy in a Markov chain of the MC
simulation, the perturbation will almost never be accepted. Thus, the system
has a high degree of correlation, and the MC simulation would not converge
as well as the formula of random sampling indicates. In other words, the

quality of a sample gets diluted by what is called the “correlation time” of A:

Ty = ijA(T) dt (33)
0

where the correlation function C4(7) of A is:

1A — (AN (At + 1) —(A)
Ca(m) = lim 7 fo (AZ) — (A2 a (9
And the quality of average becomes:
AZ —(A 2
o, = %(1 + 21,4) (35)

And again, these all can be calculated from the simulation. Thus, we can

evaluate the quality of sampling by these equations.

References for section 2.4: Newman and Barkema, Ch. 2; Binder and

Heermann, Ch. 3; Landau and Binder, Ch 2 and 7
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3. Simulation

3.1 Verification of the Wang-Landau MC code

We programmed our own Wang-Landau MC code with C++ programming
language, with the random number generator made by Agner Fog. It is
distributed freely under the terms of the GNU General Public License as
published by the Free Software Foundation. Also, the EXTNUM library of
Southwest Biotechnology and Informatics Center of New Mexico State
University was used for dealing with big numbers, which are out of the range
of C++ built-in real number. This library extends the exponent to have range
from 10-646456993 (o 1(646456992

In order to verify that the code works, we tested it with some simple models.
Once the density of states of the system is obtained, the partition function of

the system is obtained by
Q=) g(B)exp(~E/kyT) (36)
E

and from this partition function, the Helmholtz free energy is obtained by
F(T) = —kgTInQ (37)
The internal energy of the system is the average, or the expectation value of

the energy, thus

U(T) = (E)y = XE g(E)eXZ(—E/kBT) (38)
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and the specific heat is the fluctuation of the energy, so

oU(T) _(E*)r —(E)}

aT kpT? (39

C(T) =

And finally, from the definition of the Helmholtz free energy, the entropy of

the system is obtained by

S(T) = w (40)

3.1.1 2D Ising model
As discussed briefly in chapter 2.3, the Ising model shows the behavior of
the ferromagnet with lattices of spins which are up or down. Its Hamiltonian

is
H = _ZJijUi 0 — Z h;o; (41)
ij J

The first term of RHS is the interaction term, and the second term is the
external potential (magnetic field) term. In the verification, the interaction

coefficient J;; is same as 1 for all pairs of interactions, and the second term

was omitted for simplicity:

H=—]Zaiaj, J=1 (42)
ij

The results are discussed in the Chapter 4.
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3.1.2 2D Potts model
The Potts model is an upgraded version of the Ising model, and here the

spins can have many states. Its Hamiltonian is
Hy== Jyd@u0) ~ ) oy (43)
ij J

where §(0;,0;) is the Kronecker delta, which equals 1 whenever a; = gj,
and 0 otherwise. And a;, o; can have g different states: 1,2, ..., q. Here, the
interaction coefficient is 1 for all pairs of interactions, and the external field

term was omitted for simplicity.

Hy=~p ) 8(nc), Jp=1 (44)
LJj
The results for g = 10 case are discussed in the Chapter 4.

References for section 3.1: Wang and Landau, 2001a and 2001b

3.2 k-carbide as a realistic sample

Carbide is a compound of carbon and some less electronegative elements.
And x-carbide is a kind of carbide, which can be found in high aluminum-
high manganese steel products. These steel products have been expected to
be used widely, since they can have high corrosion resistance, cheap price,
and especially, light weight. [Frommeyer and Briix, 2006] And in these

products, the x-carbide acts as a crucial phase.
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The formula of x-carbide is (Fe,Mn);AlC; aluminum atoms are located on
each corner of the cubic unit cell, iron and manganese are placed on the face
centers, and carbon is at octahedral or tetrahedral site. This type of structure
is called E2; or the “anti-perovskite-type” structure. Figure 9 shows the

structure of Fe;MnAIC x-carbide.

Fig. 9. The structure of Fe;,MnAIC x-carbide

While the perovskite structure, such as BaTiOs, has trasition metal at the
center of the unit cell and non-metallic atom at the face center, the anti-
perovskite structure has transition metal at the face center and non-metallic

atom at the center of the unit cell.
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Carbide is harder than pure iron, thus strengthens the steel. The
experiment on fine x-carbide (Frommeyer and Briix, 2006) showed that the
nano-size x-carbide regularly distributed and coherent with austenite matrix
sustains homogeneous shear band acquired by dislocation glide in the high-
strength Fe-Mn-Al-C light-weight TRIPLEX steels. Thus, the ductility is
highly improved keeping the high specific energy absorption of the TWIP
steel. And also, Kimura et al. (2004) reported that the lamellar structure of
ferrite and x-carbide make steel more ductile and crack-resistant.

However, carbide also can be the initial point of crack in the steel. The
effect of brittle particles in a ductile matrix on fracture was studied [Wallin et

al., 1986]:

A\ (d\ (0= g \™
Pe=1-expi-(3) () (2—=n) 45
where Py, is the probability of fracture, d is the size of the brittle particle,

d is the average size of particles, o is the tensile stress acting on a particle,
Omin 18 the minimum fracture stress of the particle, m is Weibull
inhomogeneity factor, and o0, and dy are normalizing parameters.
According to (45), the probability of fracture increases when the size of the
brittle particle increases, or when brittle particles gather to be as one big
particle. Brittle x-carbide particles gather as band-type structures on phase

boundaries, and they can be initial points of cracks. [Han et al., 2010]
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3.3 Simulation details

3.3.1 A brief introduction to the density functional theory

The density functional theory (DFT) or first-principles calculations, is a
quantum mechanical way of modeling to investigate the electronic structure
of many-body systems, and it calculates the properties of a many-electron
system using functionals of the electron density. It has become one of the
most popular computational methods available in condensed matter physics,
chemistry and material science. The energy and the formation enthalpy, and
some other properties of the materials are obtained by calculating the
eigenvalue of the equation of the wavefunction, which is so called the

‘Kohn-Sham equation’ [Kohn and Sham, 1965]:

1
=272 + w0l = eap@ (46)

We obtained the energy of 6 kinds of x-carbide unit cell of 3.3.2 by DFT
[Seo, 2011], with all electron full potential linearized augmented planewave
(FLAPW) method [Wimmer et al., 1981, Weinert et al., 1982], and the

generalized gradient approximation (GGA). [Perdew et al., 1996]

3.3.2 Modeling Fe;MnAIC x-carbide: A cell gas model
Fe,MnAIC x-carbide has 3 kinds of octahedral sites for carbon atom, as

shown in the Figure 10.
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Fig. 10. Octa-1, Octa-2, and Octa-3 position of carbon in Fe,MnAIC x-carbide unit cell.

We can think of 6 kinds of Fe;MnAIC x-carbide unit cell: carbon can be
either in the octa-1, or the octa-2, or the octa-3 site, and the unit cell can be
either ferromagnetic or paramagnetic. The total energy state was calculated
for the 6 cells respectively, by the calculation of DFT [Seo, 2011]. Based on
that result, we modeled a bigger structure of Fe;MnAIC «x-carbide, which is a
cubic of 10x10x10 Fe;MnAIC x-carbide unit cells. Each unit cell may have
one of 6 energy states, according to 6 kinds of Fe;MnAIC x-carbide unit cell,

and it may also change to another energy state among 6 kinds. We set the
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initial energy states of unit cells of the model randomly, then changed and
sampled the state of each unit cell with Monte Carlo method, according to
the Wang-Landau algorithm. In this model, for its simplicity, all cells have
no interactions between them, thus we call this model as a “cell gas model”.

This is a very simple model:
H=) &) (47)
i

which is not near from the real FeoMnAIC x-carbide. However, it can be
used as a starting point of studying the thermodynamics of the real x-carbide
system. Since all unit cells of the system are one of 6 kinds of Fe;MnAIC «-
carbide, thus all of them have one carbon atom. So, the system is carbon-

saturated.
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4. Results

4.1 Verification results

4.1.1 2D Ising model

Figure 11-14 show the verification simulation results of 2D Ising model,
and compare them with the work of Wang and Landau (2001). Here, L

means the size of one side of the lattice.

1600 -
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E/N

Fig. 11. Density of states (DOS) from this work
Our simulation code resulted values of density of states (DOS) of 32x32
and 50x50 2D Ising model. They are well matched.
In the Figure 12, the resultant DOS simulated with the tolerance of 80%
and 95%, are shown respectively. They show almost no difference.
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Fig. 12. DOS simulated with tolerance of 80% and 95%

Figure 13 and 14 compares the free energy and the specific heat of 32x32
and 50x50 Ilattices from our simulation, respectively, with the result of
256x%256 lattice of Landau and Wang. The temperature is defined in the unit
of J/kg with | =1, where ] is the interaction parameter and kg is the
Boltzmann constant. Here, thermodynamic properties are calculated and

divided by N = L X L, the number of unit cells in the model.

43



2 256x%256 Ising model

simulation
T s exact

Ly
10° —

< ]
2NN
™y |
07 Fl
NI R N
0o 2 i 6 8 \
i 2 6 8

—al

F(T)N

1
(o]

0 2 4 6 8
il

Fig. 13. (a) Free energy curve from the work of Wang and Landau, (b) free energy curve
from this work
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Fig. 14. (a) Specific heat curve from the work of Wang and Landau,
(b) specific heat curve from this work

The simulation code works well with the 2D Ising model, and as the lattice
size gets bigger, the result gets closer to the work of Wang and Landau.
Figure 15 has the result of the calculation of the internal energy and the
entropy from our code. They show the second order phase transition

phenomena, which is the ferromagnetic transition.
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Fig. 15. (a) Internal energy curve and (b) entropy curve from this work

4.1.2 2D Potts model
Figure 16-20 show the verification simulation results of 2D Potts model,

and compare them with the work of Wang and Landau.
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Fig. 16. (a) Density of states (DOS) from the work of Wang and Landau,
(b) DOS from this work

Our simulation code resulted values of density of states (DOS) of 32x32
and 50x50 2D ¢=10 Potts model, which are shown and compared with the
values from the work of Landau and Wang, in Figure 15. We could not do as

big as Wang and Landau did, since the parallelization of the program is not
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done yet, however, the simulation result shows well the DOS of the Potts
model.

Fig. 17-20 show the free energy, internal energy, entropy, and specific heat,
respectively. Here, all values are calculated and divided by N = L X L, the

number of unit cells in the model.
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Fig. 17. (a) Free energy curve from the work of Wang and Landau,
(b) free energy curve from this work
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Fig. 18. (a) Internal energy curve from the work of Wang and Landau,

(b) internal energy curve from this work
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Fig. 19. (a) Entropy curve from the work of Wang and Landau, (b) entropy curve from
this work

They are well matched, and from the internal energy and the entropy

curves, it is clear that this system has first order transition near T, = 0.701.
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Fig. 20. (a) Specific heat curve from the work of Wang and Landau,
(b) specific heat curve from this work

The specific heat gets closer to the work of Wang and Landau as the lattice

size gets bigger.
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4.2 Fe,MnAIC k-carbide simulation results
The simulation was done with 10x10x10 3D lattices, in which each lattice
can have 6 states of Fe;MnAIC x-carbide. The difference between the lowest
energy ~ —1.737454381 x107'']  and  the  highest  energy
—1.737410840 x 10~ 11 | was divided into 8000 levels, and the DOS of
whole energy levels was calculated. Figure 21 shows the result, with

normalising the lowest energy as 0, and the highest energy as 1.

log(g(E))
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Fig. 21. DOS of the cell gas model of Fe,MnAIC x-carbide
The energy levels of 6 states are not in symmetry, thus the form of the DOS
is not symmetric. From the resultant DOS, the Helmholtz free energy was

obtained (Figure 22). Here, the free energy F, internal energy U, the
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entropy S, and the specific heat C are calculated for one mole of
Fe;MnAIC x-carbide, and divided with N, the number of unit cells in the
model, which is 10x10x10=1000 in this simulation. The unit of temperature

is given in kgT (J) for convenience.

F(T)/N(x10**J/mol)
»

0 1 2 3 4 5
k.T(J)
B
Fig. 22. The free energy of the cell gas model of Fe,MnAIC «-carbide

It decreases simply, and linearly. The system of the cell gas model has no
interactions between cells, so the phase transition would occur at almost zero
temperature. The specific heat curve of Figure 23 clearly shows this

phenomenon.
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Fig. 23. The specific heat of the cell gas model of Fe,MnAIC x-carbide

The specific heat is very close to zero, since the system has no
interactions. Moreover, it is almost same at high temperatures, but as the
temperature gets lower near zero temperature, it arises. Thus, the singularity
point of the specific heat curve would be at zero temperature. From the more

detailed curve of Figure 24, the transition may start at about 0.0022 kgT (]).
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Fig. 24. More detailed specific heat curve of the cell gas model of Fe;MnAIC x-carbide

The value of the internal energy and the entropy was calculated for the

temperature near zero. They are almost same for all temperatures. Since

ou

the specific heat is almost zero for the temperature over zero.
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5. Conclusive summary

The basic knowledge on the Monte Carlo method was studied, and the
simulation code of the Wang-Landau algorithm was made, and verified. And
finally, with a simple model, the calculation of the thermodynamic properties
of Fe;MnAIC x-carbide was attempted.

The cell gas model simulation has its limitation that it does not have any
information on interaction. And also, it is hard to obtain the information.
However, this model can be a starting point of approaching to the real
material system, and it predicts well the temperature dependence of the free
energy, internal energy, specific heat, and entropy, showing its non-
interacting characteristics.

For the further work, we will accomplish the parallelization of the
simulation code. And with the special quasi-random structure (SQS) or the
cluster variation method, which calculates interactions between supercells of
the alloy, we will make use of the Monte Carlo simulation for more realistic

Fe;MnAIC x-carbide system.
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Appendix

This is the source code of the simulation program code of Wang-Landau
algorithm, which is written in C++ language, and aided by the random
number generator of Agner Fog and the EXTNUM library.

Agner Fog’s random number generator:

http://www.agner.org/random

EXTNUM big number library:

http://research.nmsu.edu/molbio/bioinfo/bioinformatics/extnum/code.html

1. Program source code files

WL.h

#include <fstream>
#include <iomanip>
#include <cstring>
#include <cmath>
#include <ctime>

#include <vector>

#include "randoma.h"
#include "real.h"

using namespace std;

class WangLandau

{
ifstream infile env;
ifstream infile ENERGY;
ofstream outfile log;
ofstream outfile_result;

// temporary variable
char tempString1[40], tempString2[40];

// number of histograms
int num_ HISTOGRAM_Bars;

// number of energy states
int num ENERGY _States;
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public:

// energy state
vector<double> ENERGY _States;

int L, N;

double log_f;

double kB;

double ENERGY _GroundState;
double ENERGY_HighestState;
double ENERGY_Range;

int ***CELL;
unsigned int *HISTOGRAM;
double *LOG_DOS;

double ENERGY_Present;
double ENERGY_Trial;

int index ENERGY_Present;
int index ENERGY_ Trial;

double num_sweep;
double mcs;

WangLandau();
~WangLandau();

void get_env();

void get ENERGY();
void read_input();

void initialize variable();

void flip_spin();

double HAMILTONIAN();

double deltaE(int statel, int state2);
bool is_flat();

void do_step();

void write_result();

// L: L of L¥*L*L number of unit cell

//'log_f: log of modification factor
// kB: Boltzmann Constant

WL.cpp

#include "CLASS_WL.h"

void WangLandau::get_env()

{

//get environment

int i;

char tempString[40];
infile_env.open("env.txt");

for(i=0;i<2;i++)
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tempString[i] = infile_env.get();
tempString[i] = "\0';

L=0;
if(!stremp(tempString, "L:")) {
infile_env >> tempString;
for(i=0; tempString[i] !="0"; i++) {
L *=10;
L += tempString][i] - 48;

else {
cout << "Input file is incorrect." << endl;
exit(1);

}

num_ HISTOGRAM_Bars = 0;
infile_env.get(); // deal with the new line character
for(i=0;i<10;i++)
tempString[i] = infile_env.get();
tempString[i] = "\0';
if(!Istremp(tempString, "HISTOGRAM:")) {
infile _env >> tempString;
for(i=0; tempString[i] = "\0'; i++) {
num_ HISTOGRAM_Bars *= 10;
num_HISTOGRAM_Bars += tempString][i] - 48;

}

}

else {
cout << "Input file is incorrect." << endl;
exit(2);

}

infile_env.close();

}
void WangLandau::get ENERGY()
{
//get energy
int i;
bool flagl = TRUE, flag2 = TRUE;
double temp ENERGY;
char tempString[40];
char tempChar;

infile ENERGY .open("energy.txt");

int count = 0;
while(1){

for(i=0; ;it++) {
tempString[i] = infile. ENERGY .get();
if(tempString[i] == EOF)
{

infile ENERGY .seekg(-1L,ios::end);
tempChar = infile ENERGY .get();
if(tempChar=="n") {

flagl = FALSE;

break;
}
else{

flag2 = FALSE;

break;
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}
}
if(tempString[i] == "\n")
break;
}
if(flagl == FALSE) break;

count++;
tempString[i] ="\0';

temp_ ENERGY = atof(tempString);
ENERGY_ States.push_back(1);
ENERGY_States[count-1]=temp ENERGY;
if(flag2 == FALSE) break;

}

num_ENERGY_States = count;

infile. ENERGY .close();

}
void WangLandau::read_input()
{
get_env();
get ENERGY();
}
void WangLandau::initialize variable()
{

int ENERGY_RandSeed = time(NULL);
static CRandomSFMTAO ENERGY RandObject(ENERGY_RandSeed);

N = L*L*L;

log f=1.0; //'log_f: log of modification factor

kB =1.3806504¢-23;  // kB: Boltzmann Constant

ENERGY_GroundState = ENERGY _States[0] * N;

ENERGY_HighestState = ENERGY_States[num_ENERGY _States - 1] * N;
ENERGY_Range = ENERGY_HighestState - ENERGY _GroundState;

// Set DOS g(E) = 1, as a simple guess
for(int i=0;i<num_HISTOGRAM_Bars;i++)
LOG_DOSJi] = 0.0,

TN scheme(2) Choose an initial state
for(int i=0;i<L;i++)
for(int j=0;j<L;j++)
for(int k=0;k<L;k++)
CELL[i][j][k] = ENERGY_RandObject.IRandomX(0, 5);
ENERGY _Present = HAMILTONIAN();

index ENERGY_Present=(int)( (ENERGY _Present -
ENERGY_GroundState)/(ENERGY Range/num_ HISTOGRAM Bars) );
if(index ENERGY_Present > num HISTOGRAM_Bars-1) // index overflow: if all cells
are at Highest states, index = N -> make it N-1
index ENERGY_Present =nnum HISTOGRAM _Bars-1;
}

bool WangLandau::is_flat()
{
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double average HISTOGRAM = 0.8*(double)num_sweep/(double)num_ HISTOGRAM _Bars;

for(int i=0;i<num_HISTOGRAM_Bars;i++) {
if(HISTOGRAM][i] < average HISTOGRAM)
return false;

}

return true;

void WangLandau::do_step()

{

double tempDOUBLE;

double mcsMax = 0.0;
mcs = 0.0;
do{
num_sweep=0.0;
// initialize, reset Histogram
for(int i=0;i<num_HISTOGRAM_Bars;i++)
HISTOGRAM([i] = 0;
do{
mecsMax = mcs+max(100000/N, 1);
for( ; mes<mesMax; mes += 1.0)
flip_spin();

tempDOUBLE = num_sweep - floor(num_sweep/10000000) * 10000000;
if(tempDOUBLE == 0.0)
{

outfile_log << endl;

outfile log << "Sweeps of " << setprecision(0) << num_sweep

<< "are done:"<< endl;

}

for(int i=0;i<num_HISTOGRAM_Bars;i++)
outfile log << HISTOGRAM[i] <<'\t';

}
}while(lis_flat());

TN scheme(9) If the histogram is 'flat', decrease f, e.g. = sqrt(f)
log f=1log f*0.5;

outfile log << endl;

outfile_log <<"////IITITTITTTHTTIHTTTITTTITTTTITTITTTIITTITIT

outfile log << endl;

outfile log << "Now updates factor..";

outfile log << endl;

outfile log << "new update factor : " << setprecision(16) << exp(log_f);

}while(log_f>1.0e-8);

outfile log << endl << endl << endl;
outfile log <<"///////////////End of Calculation/////////////l//]" << end],

void WangLandau::flip_spin()

{

static int ENERGY_RandSeed = time(NULL);

static int lattice RandSeed = time(NULL)+1;

static int ratio_RandSeed = time(NULL)+2;

static CRandomSFMTAO ENERGY _RandObject(ENERGY RandSeed);
static CRandomSFMTA1 Lattice RandObject(lattice RandSeed);

static CRandomSFMTA1 Ratio RandObject(ratio RandSeed);
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int i, j, k, tempINT;
int new_state;
int previous_transaction;

for(int steps = 0; steps<N ; steps++)
{
num_sweep += 1.0;
tempINT = LatticeRandObject.IRandomX(0, N-1);
i=tempINT/(L*L);
j = (tempINT - i*L*L)/L;
k =tempINT - i*L*L - j*L;
previous_transaction = CELL[i][j][k];

new_state = ENERGY_RandObject.IRandomX(0, 5);
CELL[i][j][k] = new_state;
ENERGY _Trial= ENERGY _Present + deltaE(previous_transaction, new_state);
index ENERGY_Trial=(int)( (ENERGY_Trial -
ENERGY_GroundState)/(ENERGY Range/num_ HISTOGRAM Bars) );
// if index overflows
if(index ENERGY _Trial > num HISTOGRAM Bars-1)
index ENERGY_Trial = num HISTOGRAM Bars-1;

if(LOG_DOS[index ENERGY_Present] > LOG_DOS[index ENERGY_ Trial])
{
ENERGY_Present = ENERGY_Trial;
index ENERGY_Present = index ENERGY _Trial;
}
else if(Ratio_RandObject.Random() < exp(LOG_DOS[index ENERGY_Present]-
LOG_DOS[index ENERGY _Trial] )) //accept
{

ENERGY_Present = ENERGY_Trial;

index ENERGY_Present = index ENERGY _Trial;
}
else

CELL[i][j][k] = previous_transaction;

LOG_DOS[index ENERGY_Present] += log_f;
HISTOGRAM[index ENERGY_Present] +=1;

}

void WangLandau::write_result()
{
T PRINTING RESULTS///110HTTHTT1111m11ii1i1
outfile result.setf(ios::fixed);
outfile result.precision(0);
outfile result << "Total sweep: " << mcs << endl;

// rescaling
extnum* real LOG_DOS = NULL;
real LOG_DOS = new extnum[num_ HISTOGRAM_Bars];
for(int i=0;i<num_HISTOGRAM_Bars;i++)
real LOG_DOS[i]=0;
for(int i=0;i<num_HISTOGRAM_Bars;i++)
real LOG_DOS[i] = LOG_DOSJ[i]-LOG_DOS[0]+log(2.0);
outfile result << endl;
outfile result << "Energy states:" << endl;
for(unsigned int i=0;i < ENERGY _States.size() ; i++)
outfile result << ENERGY_States[i] << endl;
outfile result << endl,
outfile result <<" " <<endl;
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outfile result << "Histogram | result log(DOS) |real log(DOS)" << endl;
outfile result <<" " <<endl;

outfile result.precision(16);
for(int i=0;i<num_HISTOGRAM_Bars;i++)
outfile result << setprecision(0) << i <<"\t" << setprecision(16) << LOG_DOSJi] << "\t"
<<real LOG DOSJi] <<endl;

outfile result <<" " << endl << endl << endl;

delete[] real LOG_DOS;
}

WangLandau::WangLandau()

{
char tempString1[40];

char tempString2[40];
read_input();

sprintf(tempStringl, "log_L%d H%d.txt", L, num HISTOGRAM_Bars);
sprintf(tempString2, "result L%d H%d.txt", L, num HISTOGRAM_Bars);

outfile log.open(tempStringl);
outfile result.open(tempString2);

cout << "L: " << L <<endl;
cout << "number of Histogram Bars: " <<num_ HISTOGRAM_ _Bars << end];

outfile result <<"L:" << L <<endl;
outfile result << "number of Histogram Bars: " << num HISTOGRAM_Bars << endl;

cout << "Calculating process is going on...Please check your log file occasionally to see the interim
results.";

CELL = new int**[L];
for(int i=0;i<L;i++){
CELL[i] = new int*[L];
for(int j=0;j<L;j++)
CELL[i][j] = new int[L];
}

HISTOGRAM = new unsigned intfnum_HISTOGRAM _Bars];
LOG_DOS = new double[num HISTOGRAM _Bars];

initialize variable();

}
WangLandau::~WangLandau()
for(int i=0;i<L;i++){
for(int j=0;j<L:j++)
delete[] CELL[i][j];
delete[] CELL[i];
}
delete[] CELL;

delete[] HISTOGRAM,;
delete[] LOG_DOS;
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outfile log.close();
outfile_result.close();

double WangLandau::HAMILTONIAN()

{

double temp = 0.0;

for(int i=0;i<L;i++)

for(int j=0;j<L;j++)
for(int k=0;k<L;k++)
temp += ENERGY_ States[ CELL[i][j][k]];

return temp;

}

double WangLandau::deltaE(int statel, int state2)

{
h

return ENERGY_States[state2] - ENERGY _ States|[statel];

2. Needed environment files: example

energy.txt — includes possible energy states

-1.258431810e9
-1.258427161e9
-1.258413450e9
-1.258412230e9
-1.258403740e9
-1.258400273e9

env.ixt — includes lattice size and number of histogram size

L: 10
HISTOGRAM: 8000
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