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First principles calculation on thermodynamic prop-

erties and magnetism of κ-carbide andMonte-Carlo

cell gas model

Abstract

(Fe,Mn)3AlC κ-carbides are important substance in high strength

light-weight steels. κ-carbide is known to initiate crack and propa-

gate the crack or, otherwise, pin the slips and make uniform shear

bands. These opposite properties was decided by environment of the

system. Therefore phase diagram of Fe-Mn-Al-C quaternary system

and κ-carbide is vital for this kind of steels. However, there is no

solid thermodynamic value and stability of κ-carbide. To work to-

wards this goal, the all-electron full potential linearized augmented

plane-wave method(FLAPW) was used within the generalized gradi-

ent approximation. The formation enthalpies of various κ-carbides are

calculated. All of κ-carbides have negative formation enthalpy. The

lowest κ-carbide formation was Fe2MnAlC which is 9.5 kJ atom-mol
−1

lower than the highest formation Fe3AlC. When the carbon position

was changed to another octahedral position in Fe2MnAlC, the forma-

tion energy becomes positive but magnetic moment was increased. In

this research, first-principles calculation result was reassessed using

Monte-Carlo cell gas model. The result of Monte-Carlo simulation

showed smaller entropy value than configurational entropy caused by
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implementation problem. However, general temperature dependence

of free energy, entropy, specific heat and internal energy is well pre-

dicted by simulation. In the future work, we hope to incorporate

the calculated energies in to phase diagram calculation methods and

modify cell gas model to improve implementation problem.
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Nomenclature

d̄ The man size of brittle particle of the particle population respec-

tively

� The reduced Plack’s constant, � = h/2π

Gj The three dimensional reciprocal lattice vector

ri The position vector of electron

µB The Bohr magneton

Ψ The wave function of the electrons

ρiron The density of pure state iron

σ The tensile stress acting on the particle

σmin The minimum fracture stress of the particle

A2 The Curie temperature

ACM The temperature at which austenite transforms to cementite during

cooling process.

AC The critical temperature for heating process

Ae1 The equilibrium eutectoid reaction temperature
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Ae3 The equilibrium temperature at which α-ferrite transforms to austen-

ite

Ae4 The equilibrium temperature at which austenite transforms to δ-

ferrite

Ae The critical temperature for equilibrium

Ar The critical temperature for cooling process

C(T ) The specific heat of the system at temperature T

d The size of brittle particle of the particle population respectively

DOS The density of the states

E The total energy of the system

e The charge of electron

F The Helmholtz free energy

g(E) The density of the states at energy level E

H The hamiltonian of the system

kB The Boltzmann constant

m The Weibull inhomogeneity factor
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me The mass of electron

n(r) The electronic density function

Pfr The possibility of fracture

S The entropy of the system

U The internal energy of the system

ul The solution of the radial Schrödinger equation solved at a fixed

energy parameter El

vee The electron-electron interaction

vext The external potential by atom

vXC The exchange-correlation potential

Ylm The spherical harmonics at quantum number l and m

Z The partition function for classical system

Fe2MnAlC (octa-1) The κ-carbide with E21 structure

Fe2MnAlC (octa-2) The octahedral carbon position with four Fe atoms and

two Al atoms
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Fe2MnAlC (octa-3) The octahedral carbon position with two Mn atoms,

two Fe atoms, and two Al atoms

Fe3−xMnxAlC The structure with x iron atoms replaced by x Mn atoms
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1 Introduction

It is good to be save energy and to protect the environment. Most parts

of cars and ships are made of steels, so on way forward is to reduce the

density of steel while maintaining the properties such as toughness, which

ensure safety.

Light-weight steel design are usually exploit manganese, aluminum, and

carbon as alloying elements (Frommeyer and Brüx, 2006; Chin et al., 2010;

Chang et al., 2010).

Manganese is a well-known austenite stabilizer and increases strength and

hardness of steels. However, large concentration can reduce the ductility

and weldability. Carbon also stabilizes austenite and forms various car-

bides for instance, cementite (Fe3C) and κ-carbide (Fe3AlC, Fe2MnAlC)

which has a huge effect on steel properties. Aluminum is the key element

in lowering density of steel because it is light element. These Fe-Mn-Al-C

quaternary steels have been researched in the contest of transformation in-

duced plasticity (TRIP) steels and twin induced plasticity (TWIP) steels.

Frommeyer and Brüx (2006) reported that uniformly distributed nano-

size κ-carbide supported a shear-band induced plasticity (SIP effect). The

density of steel was at least 10% less than pure iron and the specific en-

ergy absorption at a high strain rate of 10
3
s
−1

was 0.43 Jmm
−3

which is
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Fuel Economy Benefit (%)

Small Car Mid-size Car

Velocity 30MPH 45MPH 60MPH 30MPH 45MPH 60MPH

Weight 5% 3.3 2.6 1.9 3.6 2.4 1.9

Reduction 10% 6.0 4.8 3.5 7.1 4.9 3.8

20% 12.7 10.0 7.2 15.1 10.1 7.9

Table 1.1: Simulation results of automobile fuel economy with varying

weight reduction. A small car has an additional 300 lb with 2 passen-

gers. Mid-sized car has an additional 450 lb with 3 passengers (Casadei

and Broda, 2008).

very close to the value of TWIP steel. This κ-carbide also can be found in

Fe-Al-C ternary alloys and it has a hardening effect on the system (Pang

and Kumar, 1998, 2000). Kimura et al. (2004) showed that the location

of κ-carbide has a noteworthy effect on steel strength and elongation. The

lattice misfit between κ and austenite (γ) can be controlled by the nickel

and aluminum contents (Kimura et al., 2002; Tian et al., 2008), and fur-

thermore, the stacking fault energy can be managed to stimulate the SIP

effect when this is 110mJm
−2

(Frommeyer and Brüx, 2006). It is clear that

controlling of κ-carbide is important for making this kind of steel. There is
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work to figure out thermodynamic and general properties by experiments

(Frommeyer and Brüx, 2006; Chang et al., 2010; Pang and Kumar, 1998,

2000; Kimura et al., 2004, 2002; Tian et al., 2008; Palm and Inden, 1995;

Choo et al., 1997; Choo and Han, 1985; Ishida et al., 1990; Han et al., 2010),

and theory (Chin et al., 2010; Ishida et al., 1990; Connetable et al., 2008;

Ohtani et al., 2004; Maugis et al., 2006; Connetable and Maugis, 2008).

However these deal only with ternary κ-carbide (Fe3AlC) and the calcu-

lated formation energies are uncertain because it is too method dependent

(Table 1.3). There are also experiment results that the magnetism of Fe-

Mn-Al-C quaternary system can be changed with κ carbide precipitation

(Sato et al., 1990).

In this work, formation enthalpy at 0K of Fe3AlC, Fe2MnAlC, FeMn2AlC,

and Mn3AlC and their magnetic properties were investigated with first-

principles calculation, specifically, by using the full-potential linearized aug-

mented wave (FLAPW) method (Wimmer et al., 1981; Weinert et al., 1982)

based on the generalized gradient approximation (GGA) implemented in

the QMD-FLAPW package. Also, new concept of cell gas Monte-Carlo

simulation was designed with calculated total energy of materials without

a database.
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1.1 Fe-Mn-Al-C High Manganese and High Aluminum Steels

High manganese and high aluminum steels have been expected to replace

Fe-Cr-Ni-C stainless steels for its corrosion resistance, light weight, cheap

price and good combination of ductility and strength (Frommeyer and Brüx,

2006; Chang et al., 2010). Fe-Mn-Al-C or Fe-Mn-C system steels have three

significant deformation modes as a function of stacking-fault energy.

TRIP steel exploits the transformation of austenite to martensite at stress

concentration. This transformation has a role of work hardening, homoge-

neous deformation and decentralization of stress.

TWIP steels get benefit from the mechanical twinning of austenite. The

shear strain induced by twinning is s = 1/
√
2 ≈ 0.707 and that induced by

displacive transformations is 0.25. So, the strain obtained by twinning is

more than twice that of simple shear.

Normally, TRIP and TWIP steels have much better mechanical proper-

ties than SIP steels but, if fine κ-carbides harder dislocation movement,

SIP steels can replace the other two. Moreover, SIP steels contain 6 to 12

mass% of aluminum so they are much lighter then TRIP or TWIP steels.

For TRIP and TWIP steels, there is a limitation to the aluminum amount

because it increases the stacking fault energy and leads to the suppression

of TRIP and TWIP.

However, cracking is reported during cold rolling (Han et al., 2010), initi-

12



Figure 1.1: Density as function of the aluminum concentration of di-
verse Fe-xMn-yAl-zC steels with varying manganese contents (14mass%
to 28mass%). The lower linear curve represents the overall reduction in
density with increasing aluminum concentration. The upper curve shows
the decrease in density due to the expansion of the γ-lattice. The density
of pure iron is ρiron = 7.874 g cm−3 at room temperature (Frommeyer and
Brüx, 2006).
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ated from the ferrite and κ-carbide boundaries. The reason of cracking was

coarsened κ-carbide and position. So, controlling of κ-carbide precipitation

is very important. Kimura et al. (2004) dealt with this effect and reported

lamella structure of ferrite and κ-carbide make steel more ductile and can

reduce cracking.

1.2 κ-carbide

1.2.1 Formation and Crystal Structure

The formula of κ-carbide is (Fe,Mn)3AlC; aluminum atoms are located on

each corner of the cubic unit cell, iron and manganese are placed on the face

centers, and carbon is at the center of unit cell (octahedral site made by

iron and manganese). The unit cell of κ-carbide is shown in Fig. 1.2. With

the Strukturbericht Designation, this type of structure is E21 or called “an

anti-perovskite-type” structure.

In the perovskite structure for example, BaTiO3, titanium, which is a tran-

sition metal, is located at the center of the unit cell, and oxygen, the

non-metallic atom, occupies the face center. However, the face centers

of κ-carbide are filled with transition metal and center of the unit cell is

occupied by non-metallic carbon atom, so κ-carbide structure is called an

“anti-perovskite” sturucture.
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Figure 1.2: Unit cell of κ-carbide : aluminum occupies each corner, iron
and manganese are located on face centers and the carbon atom is placed
at the center of the unit cell which is also an octahedral site made by iron
and manganese.
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1.2.2 Different Octahedral Site of Fe2MnAlC κ-carbide

There are three different octahedral sites possible in Fe2MnAlC κ-carbide.

Fig. 1.3. shows the octahedral sites. Even if there is position exchange

between Al, Fe, and Mn atoms, the only difference is apparent for the

carbon octahedral site. This property was used for Monte-Carlo simulation

as a cell gas model.

In the chapter 4.2, the formation enthalpies of different carbon octahedral

sites were also calculated by using first-principles and with the results,

a cell-gas model was made to estimate the free energy with Monte-Carlo

simulation.

1.2.3 Role of κ-carbide in the Fe-Mn-Al-C and Fe-Al-C System

In general, carbide is harder than pure iron and strengthens steels. How-

ever, it can also be brittle, therefore, it initiates cracks or helps the propa-

gation of cracks. Wallin et al. (1986) reported the effect of brittle particles

in a ductile matrix on fracture by using a weakest link model, which is

Pfr = 1− exp

�
−
�
d

d̄

�3

·
�

d̄

dN

�3

·
�

σ − σmin

σ0 − σmin

�m
�

(1.1)

where d and d̄ are brittle particle and mean size of the particle population

respectively, σ is the tensile stress acting on the particle, σmin is the mini-
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(a) (b)

(c)

Figure 1.3: Possible configurations for octahedral sites which contain car-

bon. Octahedral site made by (a) four Fe atoms and two Mn atoms, (b)

four Fe atoms and two Al atoms, (c) two Mn atoms, two Fe atoms and two

Al atoms.
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mum fracture stress of the particle, m is Weibull inhomogeneity factor, and

σ0 and dN are normalizing parameters (Wallin et al., 1986).

According to Eq. 1.1, the probability of fracture is increased when,

1. the size of the brittle particle increases,

2. the brittle particles exist continuously, in which case they can be

treated like an one big particle.

Also, the phase which is surrounding κ-carbide is important. For example,

coarsened κ-carbide in a phase boundary can easily initiate cracks which

propagate (Fig. 1.4) when austenite (γ) coexists with κ (Kimura et al.,

2004). Indeed, if there is ferrite, the crack will go through the ferrite (Fig.

1.5) and non-work hardened ferrite in the κ-carbide inhibits crack prop-

agation or changes the direction of crack (Fig. 1.6) (Han et al., 2010).

The experiments on fine κ-carbide was reported by Frommeyer and Brüx

(2006). In their work, nano-size κ-carbide was regularly distributed and

coherent with austenite and it sustained homogeneous shear band acquired

by dislocation glide. As a result, ductility is remarkably improved and the

specific energy absorption is as high as that of TWIP steels.

Scattered κ-carbide on phase boundaries is usually the initial point of

cracks. When austenite coexists with κ-carbide, cracks propagate along

κ-carbide or along the boundary between κ and austenite. However, when

18



Figure 1.4: A back-scattered electron image of the tensile specimen in

the vicinity of fracture surface of the Fe-29Mn-9Al-2.6C (in mass%) alloy

(Kimura et al., 2004).

κ is in ferrite, the crack rapidly moves into the ferrite. With high manganese

and high aluminum contents, austenite is highly stable so phase transfor-

mation to �-martensite would not happen and the stacking fault energy is

too high to induce mechanical twinning. So shear band induced plasticity

will be the primary deformation mode. κ-carbide sustains shear bands so,

it is possible for those to be uniformly dispersed. However, to obtain good

ductility via the SIP effect, κ-carbide should be fine and coherent with the

austenite (Frommeyer and Brüx, 2006). It clearly is necessary to strictly

control the precipitation of κ-carbide.
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Figure 1.5: Scanning Electron Microscope (SEM) micrographs of the cross-

sectional area beneath the tensile fracture surface of the Fe-(4 6)Mn-(6 8)Al-

0.1C (mass%) alloy. Crack was initiated in κ-carbide and rapidly propa-

gated into ferrite (Han et al., 2010).

Figure 1.6: SEM micrographs of the cross-sectional area beneath the tensile

fracture surface of the Fe-(4 6)Mn-(6 8)Al-0.3C (mass%) alloy. Crack in

the κ-carbide band is short and discrete (Han et al., 2010).
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1.3 Thermodynamics and Kinetics of κ-carbide and Related

Phases

Pure iron is unusual at ambient pressure. At room temperature, the BCC

signified by α is the stable form. When the temperature is raised to Ac3

which is 910
◦
C, the ferrite transform to FCC austenite denoted by γ. If

the temperature reaches to 1390
◦
C, austenite becomes ferritic again, tra-

ditionally denoted by δ even it has same structure as α-ferrite apart from

magnetic properties. Alloying with carbon drastically changes the phase

fields. So, an important feature in steel research is the phase diagram of

Fe-C binary system (Bhadeshia and Honeycombe, 2006). Fig 1.7 shows the

iron-iron carbide equilibrium phase diagram.

In Fig 1.7, austenite (γ) has the largest phase field compared with α- and

δ-ferrite, reflacting the solubility of carbon in each phase. The maximum

solubility of carbon in austenite is about 2mass%, and 0.025mass% for α-

ferrite.

There are many temperatures and critical points shown in Fig 1.7. First,

Ae1 is the eutectoid reaction temperature at 723
◦
C. Second, there is the

Ae3 temperature at which austenite becomes the stable phase. For pure

iron it is 910
◦
C but it decreases as the carbon content increases. Third,

the δ-ferrite transition temperature of austenite which is called Ae4 and

1390
◦
C for pure iron. Carbon addition makes Ae4 higher. A2 is the Curie

21



Figure 1.7: The Fe-Fe3C equilibrium phase diagram (Pollack, 1988).
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temperature at which magnetic phase transition happens the from ferro-

to para-magnetic states, independent of the carbon content. The ACM

temperature is that at shich cementite (Fe3C) is formed an cooling from

austenite. These temperatures can be measured, but there is some hystere-

sis between cooling and heating. So, each temperatures has AC for heating

(chauffage), Ar for cooling (refroidissement), and Ae (equilibrium). How-

ever, AC and Ar are sensitive to heating and cooling rate.

There are many alloying elements which are used in steels and their effect

can be classified by their ability to stabilize austenite. Fig 1.8 displays the

four classes of alloying effects.

Fig 1.8a shows the effect of elements which include nickel and manganese

which promote austenite. This type of alloying element can totally remove

α- and δ-ferrite. Therefore, nickel and manganese lower the Ae4 and Ae3

to room temperature and it makes easier to retain austenite.

Fig 1.8b represents the example of alloying elements which expand the γ

field. Carbon is typical element in this class. This type of element usually

makes a compound with iron so expansion of γ-phase field is limited.

Fig 1.8c shows a closed γ-field, due to an element which heavily suppresses

the austenite phase field, and connect the δ- and α-ferrite phase fields. Alu-

minum, silicon, and phosphorus come in this category.

A contracted γ-field is shown in Fig. 1.8 (d). The two forms of ferrite are

23



Figure 1.8: Classification of iron alloy phase diagrams : (a) open γ-field;
(b) expanded γ-field; (c) closed γ-field; (d) contracted γ-field. (Bhadeshia

and Honeycombe, 2006).
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Figure 1.9: Relative strength of alloying elements as: (a) ferrite formers;
(b) austenite formers (Bhadeshia and Honeycombe, 2006).

not continuously connected. Tantalum, niobium and zirconium fall within

this class. From a thermodynamic point of view, open or expand austenite

phase field means that the solute lowers the free energy of austenite. On the

other hand, a closed or contracted γ-field imply alloying element stabilizes

the formation energy of ferrite. The relative strength of alloying elements

are shown in Fig 1.9.

The commonly researched Fe-Mn-Al-C light-weight steels contains 20 to
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30mass% manganese, 5 to 15mass% aluminum and 1 to 3mass% carbon.

With these contents, the steel has austenite as the main phase. According

to experimental work done by Ishida et al. (1990), when κ-carbide coexists

with austenite, the minimum carbon content to form κ-carbide is higher

than in the κ + α phase field. Because carbon solubility in austenite is

larger than ferrite, sufficient carbon is available to form κ-carbide.

The experimental construction of a quaternary phase diagram is possible

but it needs a lot of time, so alternative way have been developed. The

CALPHAD (Computer coupling of phase diagrams and thermochemistry)

assessment method requires thermodynamic databases and it is difficult for

most of compounds to measure appropriate data. Therefore, a method to

calculate basic thermodynamic data is needed and first-principles estima-

tion is one solution.

When aluminum is used as alloying element, it my form various compounds,

including, FeAl3, Fe3Al, Fe3AlC, and Fe2MnAlC. Thermodynamic data for

these compounds are important to calculate a phase diagram, and there are

reported values obtained using several method. Table 1.3 shows the calcu-

lation results and both first-principles calculation methods are for 0K. The

FLAPW calculation by Ohtani et al. (2004) has remarkable difference with

other method. This results was explained by Connetable and Maugis (2008)

to be a consequences poor convergence. To avoid that, they used very large
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Compounds CALPHAD assessment FLAPW∗ Pseudo Potential∗

L12 Fe3Al -17.5a, -19.3b -8.8c -19.3d, -21.4e

E21 Fe3AlC -18.2a, -16.0b -27.9c -18.4e

E21 Mn3AlC -27.3a - -

Table 1.2: Calculated results of formation enthalpy of L12 Fe3Al, E21

Fe3AlC and Mn3AlC (in kJ/atom−mol).

The reference states are bcc Fe, fcc Al, cbcc Mn and graphite C.

a Chin et al. (2010)

b Connetable et al. (2008)

c Ohtani et al. (2004)

d Lechermann et al. (2005)

e Connetable and Maugis (2008)

∗ These are first-principles calculations but have different schemes for the

atomic potentials. A detailed account will be given in chapter 2.5.
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convergence parameters. Anyhow, these results are only for Fe-Al-C, and

Mn-Al-C ternary systems. In the work of Chin et al. (2010), the results

for Fe-Al-C and Mn-Al-C ternary systems was reproduced for Fe-Mn-Al-

C quaternary system, and phase stability of κ-carbide, (Fe,Mn)3AlC, in

this quaternary system without the formation energy of Fe2MnAlC and

Mn2FeAlC.

In first-principles calculations, formation energy calculations for adding,

subtracting or replacing an atom is easier than other methods. However,

first-principles calculations are for 0K making of hard to reproduce phase

stability for realistic temperature ranges. Theoretically, the formation en-

ergy from first-principles calculation is accurate for 0K and vacuum en-

vironment. To extend the results, vibrational, electronic, and magnetic

enthalpy and entropy increase should be considered. There have been nu-

merous attempts to do this (Koermann et al., 2010; Liu, 2009; Ghosh et al.,

2002; Kaufman et al., 2001; Turchi et al., 2005; Burton et al., 2001; Zhong

et al., 2004; Turchi et al., 2007; Wang et al., 2004).

There are two additive properties which are lattice thermal vibrations and

thermal electronic contributions. Thermal vibration is usually analyzed by

the lattice dynamics or phonon approach, and the thermal electronic prop-

erty can be neglected in some cases but if the density of states at the Fermi

level is high, then thermal electronic contribution should be considered. In
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Alloy (at.%) Phase Chemical composition (at.%)

Fe Mn Al C

Fe-26Mn-13Al-8C γ 54.3 26.1 12.7 6.9

κ 40.4 28.1 15.9 15.6

Fe-26Mn-15Al-8C γ 54.0 25.1 14.4 6.5

κ 42.1 26.5 17.1 14.3

Fe-25Mn-17Al-8C γ 52.3 25.1 16.5 6.1

κ 42.3 25.9 18.7 13.1

Table 1.3: Chemical compositions evaluated by EPMA for γ and κ phases

(Kimura et al., 2004).

addition, contributions from electron spin polarization should be included

for magnetic materials. The mixing of different atoms needs to be taken

into account in the total entropy.

κ-carbide forms by spinodal decomposition (Han and Choo, 1989; Sato

et al., 1990; Choo et al., 1997; Chen et al., 2010a,b; Chang et al., 2010)

and, in the work done by (Kimura et al., 2004), their Electron Probe Micro-

Analyzer (EPMA) results show that κ-carbide has much more carbon than

austenite has (Table 1.3). Suppose that Fe, Mn, Al atoms are at the same

position in the both of austenite and κ-carbide, then, the only difference

between austenite and κ is the existence and position of carbon. Also, man-
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ganese and aluminum are substitutional solutes they diffuse more slowly

than interstitial atoms like carbon so they will not move. Therefore, the

results in table 1.3 could mean that only the carbon position and kinet-

ics decide how κ-carbide forms. To confirm this theory, in this paper, the

formation energy calculation for three different kinds of carbon octahedral

interstice position was performed. Detailed information about the type of

octahedral is in section 1.2.2. With this result, the Helmholtz free energy as

a function of temperature was calculated by using Monte-Carlo simulations.

1.4 Previous Work

In section 1.3, there was an issue about the convergence of calculation

results (Ohtani et al., 2004; Connetable and Maugis, 2008). So, before per-

forming calculation, convergence parameters were tested for better perfor-

mance. As a result, in this work, the calculation parameter for convergence

was used by following the published work done by Seo et al. (2009).
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2 First-Principles Calculation

First-principles, or ab initio calculation means that the calculation starts

directly from the fundamental laws of physics and doesn’t use any assump-

tion like empirical method and fitting parameter.

The first-principles calculation has become the center of interest in many

field. So, in these days, from the semiconductor science to metallurgy, the

first-principles calculation is widely used.

The accuracy of first-principles calculation is guaranteed by the physics

theory. Also, it can calculate from a monatomic system to few hundred

atoms system is easy so it makes possible to study various possibility that

experiment cannot do.

2.1 Density Functional Theory (DFT)

Density functional theory (DFT) is the main stream to solve the Schrödinger

equation in first-principles calculation. DFT became very popular in quan-

tum chemistry since 1990s, because of a useful balance between accuracy

and computational cost in the solid state physics. DFT make the scientist

can calculate much larger systems than traditional ab initio method. In

many electron system, Schrödinger equation is Eq. (2.2) where, e2 = � =

me = 1, the H is the hamiltonian of the system, Ψ is the wave function
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and ri denotes the position vector of electron.

HΨ(r1, r2, . . . , rn) = EΨ(r1, r2, . . . , rn) (2.1)

this can be written explicitly as

{
�n

i=1−
1
2∇

2
i +

�n
i=1 vext(ri) +

�n
i<j vee(ri, rj) +

�n
i=1 vXC(ri)}Ψ(r1, r2, . . . , rn)

= EΨ(r1, r2, . . . , rn)

(2.2)

The first term of left in the equation is kinetic energy of electrons, the

second term vext is external potential by atom and the vee is electron-

electron interaction, and the vXC is exchange-correlation potential due to

the Pauli’s exclusion principle and correlation energy which is remaining

unknown piece of energy. n is the number density of electron which is

larger than Avogadro’s number in solid. Solving the Schrödinger equation

directly is hard because, it is too complicate to calculate, so, we need a

suitable approximation which is called density functional theory.

2.2 The Variational Principle

The way to find ground state energy is provided by one simple principle

called ‘variational principle’. In the quantum mechanics, total energy of

the system with hamiltonian Ĥ, can be expressed by Eq. (2.3).
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E = min
φ

< φ|Ĥ|φ > (2.3)

Where, the φ is the wave function which satisfies,

� ∞

−∞
dx|φ(x)|2 = 1 (2.4)

This equations mean that any normalized trial wave function can be used

to find ground state energy of the system and only one wave function is

satisfy the minimum energy (See section 2.3). Therefore, the total energy

calculation result is always same or lager than true ground state energy, in

the same meaning, the lower energy is the more accurate energy.

2.3 Hohenberg-Kohn Theorems

Hohenberg-Kohn theorems are result of the formulation of density func-

tional theory as an exact theory of many-body systems. The first theorem

shows that only from the ground state density, n0(r), all properties of of the

system can be determined. This theorems complete the loop between ex-

ternal potential Vext(r), wave function of all state Ψi({r}) and ground state

wave function Ψ0({r}). Fig. 2.1 shows schematic description of Hohenberg-

Kohn theorem (Hohenberg and Kohn, 1964).
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Figure 2.1: Schematic representation of Hohenberg-Kohn theorem. The

smaller arrows denote the usual solution of the Schrödinger equation where

the potential Vext(r) determines all states of the system Ψi({r}), including
the ground state Ψ0({r}) and ground state density n0(r). The long arrow

labeled “HK” denotes the Hohenberg-Kohn theorem, which completes the

circle (Martin, 2004).

2.4 The Kohn-Sham Equation

The Kohn-Sham equation is widely used for most “first-principles” or “ab

initio” calculation tools for atoms, molecules, and condensed matter.

Unlikely to Hohenberg-Kohn theorems, the Kohn-Sham equation is the

approach to make problem simple by a mathematical assumptions. The

result in shown in Eq. (2.5).

{−1

2
∇2

+ vs(r)}ψi(r) = �iψi(r) (2.5)

34



where,

vs(r) = vext(r) +

�
d3r

n(r)

|r− r�| + vXC [n](r) (2.6)

and the density of electron,

n(r) =
n�

i=1

|ψi(r)|2 (2.7)

where the ψi is the one-particle wave function. Now, the many-body

Schrödinger equation becomes non-interacting single electron equation.

In the published work by Kohn and Sham in 1965 (Kohn and Sham, 1965),

their ansatz assumes that the ground state density of many-body interact-

ing system is equal to that of some single particles non-interacting system.

The specific result is shown in Eq. (2.2) to Eq. (2.6). Fig. 2.2 shows the

schematic diagram of Kohn-Sham equation.

While the Kohn-Sham equation change the problem from interacting sys-

tem to non-interacting system, the difficulty of many-body problem is con-

centrated to deal with the exchange-correlation functional in Eq. (2.6).

2.4.1 Local Density Approximation (LDA)

Local density approximation (LDA), or more generally local spin density

approximation, is the widely used method to calculate exchange-correlation

energy in the Kohn-Sham equation. In the LDA, the exchange-correlation
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Figure 2.2: Schematic representation of Kohn-Sham ansatz. (Compare

to Fig. 2.1.) The notation HK0 denotes the Hohenberg-Kohn theorem

applied to the non-interacting problem. The arrow labeled KS provides

the connection in both directions between the many-body and independent

particle systems, so that the arrows connect any point to any other point.

Therefore, in principle, solution of the independent particle Kohn-Sham

problem determines all properties of the full many-body system (Martin,

2004).

energy is an integral over all space with exchange-correlation energy density

at each point assumed to be the same as in a homogeneous gas with that

density.

2.4.2 Generalized Gradient Approximation (GGA)

In the LDA method, exchange-correlation potential was assumes to be the

equal as in a homogeneous gas with that density. In the generalized gradient

approximation, the functional of the gradient of density |∇n| is used. So

GGA can be dealing with inhomogeneous system. Indeed, It is easy to

composite to program. By GGA, exchange-correlation functional can be
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expressed by Eq. 2.8.

EGGA
XC [n↑, n↓] =

�
d3r n(r)�XC(n

↑, n↓, |∇n↑|, |∇n↓|, . . .)

≡
�

d3r n(r)�homX (n)FXC(n
↑, n↓, |∇n↑|, |∇n↓|, . . .)

(2.8)

where, n↑ and n↓ is the density of each spin, �XC is exchange-correlation

energy, FXC is dimensionless and �homX is the exchange energy of the unpo-

larized gas.

2.5 All Electron Full Potential Linearized Augmented Plane

Wave Method (FLAPW)

There are many methods in the world to solve the Kohn-Sham equation

and they are distinguished by how they deal with each term in the left of

Eq. 2.2. The categorized DFT implementations are shown in Fig. 2.3.

In this research, self-consistent all-electron full potential linearized aug-

mented plane wave method (FLAPW) and GGA was used. The FLAPW,

in the condensed matter, divide the unit cell by three different type; muffin-

tin sphere, interstitial regions between the spheres and vacuum. Muffin-tin

(MT) spheres are located in nuclei of each atoms. Fig. 2.4 shows the

schematic geometry in FLAPW calculation, where RMT denotes the radius
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Figure 2.3: Categorized DFT implementations (Blugel, 2010).

of muffin-tin sphere.

The FLAPW method use full potential, not approximate the shape

of charge density and potential so, to calculate ground state energy, trial

wave function in the variational principle (section 2.2) will be complicated.

However, the psuedopotential method approximate the atomic potential.

As a result, trial function is also simple.

Plane wave functions and its sum are naturally orthonormal to each other,
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Figure 2.4: Geometry of FLAPW, where RMT denotes the radius of muffin-
tin sphere.

so FLAPW uses plane wave function as a basis set of one-particle wave

function in the Kohn-Sham equation (Eq. (2.5)). Therefore, FLAPW one-

particle wave function in the geometry are

ψi(r,k) =
�

j

cijφ(r,Kj); Kj = k+Gj (2.9)
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where, k|| is an arbitrary vector of the Brillouin zone (BZ) and Gj is a

three-dimensional (3D) reciprocal lattice vector. Then, the basis functions

in each partition in FLAPW geometry are:

φ(r,Kj)

=






Ω1/2eiKj·r interstitial

�α
lm[Aα

lm(Kj)ul(Eα
l , rα) +Bα

lm(Kj)u̇l(Eα
l , rα)]Ylm(r̂α) sphere

�
q[Aq(Kj)ukq(Eν , z) +Bq(Kj)u̇kq(Eν , z)]ei(k+Kq)·r vacuum

(2.10)

where, ul is the solution of the radial Schrödinger equation solved at a

fixed energy parameter El and their derivatives u̇l. The Ylm are spherical

harmonics at quantum number l and m, and the coefficients Alm and Blm

are determined by the requirement that the plane waves be continuous in

value, as be their radial derivative, at the atomic spheres.

2.6 Computational Method

The Kohn-Sham equation (Kohn and Sham, 1965) was solved self-consistently

by the all-electron total-energy full potential linearized augmented plane

wave (FLAPW) method (Weinert et al., 1982; Wimmer et al., 1981) im-

plemented in the QMD-FLAPW package within the generalized gradient

approximation (Perdew et al., 1996) to density functional theory (Hohen-
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berg and Kohn, 1964). The integration over the three dimensional Bril-

louin zone (3D-BZ) was performed by the improved tetrahedron method

(Lee et al., 2002) over 21 × 21 × 21 for κ-carbide and another carbon oc-

tahedral position, diamond carbon, FCC Al, FCC manganese, and BCC

Fe Monkhorst-Pack mesh (Monkhorst and Pack, 1976) in the 3D-BZ. The

linearized augmented plane wave (LAPW) basis set was expanded by us-

ing a plane wave cutoff Kmax, which was 7.7× 2π/a where a is the lattice

constant for the corresponding system. Lattice harmonics with l ≤ 10

were employed to expand the charge density, potential and wave functions

inside each muffin-tin sphere, with the radii of 2.0 a.u. for Fe, Al, and

Mn and 1.3 a.u. for C atom. The star-function cutoff, Gmax, was set by

3×Kmax = 23.1× 2π/a. Gmax was employed for depicting the charge den-

sity and potential in the interstitial region. In this research, all calculation

parameters are based on work done by Seo et al. (2009). The core electrons

were treated fully relativistically while valence states were treated scalar

relativistically without spin-orbit coupling. Self-consistency was assumed

when the difference between input and output charge (spin) density was less

than 1.0× 10−5 electrons/a.u.3 The equilibrium volume and bulk modulus

are obtained by fitting to the Murnaghan equation of state (Murnaghan,

1937).

All of calculated materials is optimized with respect to its lattice parame-
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ter.

Calculated total energy of the system is the internal energy U at zero

Kelvin and zero pressure. The formation enthalpy ∆H at zero Kelvin and

zero pressure is the calculated internal energy ∆U as and product of volume

V and external pressure P vanish at zero pressure. The formation enthalpy

of a ternary quaternary compound WkXlYmZn, ∆Hf (WkXlYmZn) is

∆Hf (WkXlYmZn) =
{U(WkXlYmZn)− kU(W )− lU(X)−mU(Y )− nU(Z)}

k + l +m+ n

(2.11)

where W, X, Y, and Z are elements and k, l, m, and n are the number of

W, X, Y, and Z atoms, respectively.
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3 Monte-Carlo Simulation

Monte-Carlo simulation is the way that uses random sampling of the system

to compute their result. Monte-Carlo is used for unfeasible or impossible

to calculate an exact result because it is suitable for computation with its

reliance on repeated computation of random numbers. Also, Monte-Carlo

simulation is suitable for studying large number of coupled system, such as

fluid, disordered materials and strongly coupled solid.

Wang-Landau method (Wang and Landau, 2001b), which is one of the

Monte-Carlo method for statistical physics, was chosen for calculation scheme

because it is naturally imply the temperature dependence of system. In this

research, first-principles calculation result, at zero Kelvin and zero pressure,

is reassessed to finite temperature by Wang-Landau method.

3.1 Partition Function

The partition function is the important quantity that include the informa-

tion of equilibrium statistical mechanics. From the partition function, it is

possible to derive essential information to figure out the properties of the

system such as free energy, internal energy and entropy. The general form

43



for partition function for classical system Z is

Z =

�

all states

e−H/kBT (3.1)

where H is the Hamiltonian of the system, T is temperature, and kB is the

Boltzmann constant. In general, partition function cannot be computed

exactly because it is too big to calculate by computer. For example, for

10000 interacting atoms with two possible states per atom, the partition

function of given system would contain 2
10000

terms. The probability of

any possible state of system is also acquired from the partition function.

The probability that state is in particular state µ is given by

Pµ = e−H(µ)/kBT /Z (3.2)

where, H(µ) is the Hamiltonian when the system is in the µth state.

3.2 Free Energy, Internal Energy, Specific heat and Entropy

Partition function is directly connected with thermodynamic quantities,

such as, Free energy, Internal energy and Entropy. The Helmholtz free

energy of the system can be determined by partition function from,

F = −kBT lnZ (3.3)
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then, other thermodynamic properties can be calculated by differentiation

of Eq. 3.3. The internal energy U of the system can be obtained from the

free energy via

U = −T 2 ∂

∂T

�
F

T

�
(3.4)

or, from the partition function,

U =

�
µEµe−H/kBT

Z
= �E�T (3.5)

The specific heat can be estimated from the fluctuations in the internal

energy (Wang and Landau, 2001a)

C(T ) =
�E2�T − �E�2T

kBT 2
(3.6)

Also, the entropy S of the system is given by

S = kB lnP (3.7)

where P is the probability of the occurrence of a state. Then, the entropy

can be determined from the free energy from

S = −
�
∂F

∂T

�

V,N

(3.8)
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where V is the volume of the system and N is the composition.

3.3 Metropolis method

The Metropolis Monte-Carlo algorithm (Metropolis et al., 1953) was ini-

tiated from Boltzmann’s insight that in the finite temperature, molecules

are distributed between high energy or unfavorable states and low energy

or favorable states.

In the Metropolis method,

In the Metropolis method, it has one reference state (A) and make one

“reference candidate” state (B) randomly. Then it compares the energy of

the each state and it changes reference state by following rule.

1. if EA ≥ EB then B become reference state.

2. if EA ≤ EB then, generate random number P in range 0 ≤ P ≤ 1.

Then, compare P with exp(−∆E/kBT ), if P ≤ exp(−∆E/kBT ), B

is the reference state, if it’s not, A is the reference state.

where EA and EB are energies of the states A and B, and ∆E = EB −EA.

Therefore, the system can be unfavorable state or high energy state. After

enough number of iteration, the reference state would become arithmetic

averages over the entire sample of states.
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3.4 Wang-Landau method

The Wang-Landau method is the extension of the Metropolis method to

develop for calculate the density of states of a computer simulated system,

such as Ising model of spin glasses, or model atoms in a molecular force

field (Wang and Landau, 2001a,b; Landau et al., 2004). The possibility

that decide what states the molecules belong to is given by energy differ-

ence and the density of states.

The difference between Metropolis and Wang-Landau methods is how they

change the reference state.

In the method, firstly, the minimum and maximum possible states are cal-

culated and divided by given number to make a histogram. A visits his-

togram H(E) is initially 0 for all states. In the Wang-Landau method, it

uses density of the states g(E) so, changing state is accepted when,

P < min

�
1,

g(EA)

g(EB)

�
(3.9)

where, the generated random number P is on [0, 1). Density of the states

g(E) is all 1 at the first time. Also, Wang-Landau method use update

factor f which is initially e and reduced to square root of itself after end of

the iteration.

Also, every “reference candidate” state are recorded in visits histogram
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H(E), for instance, in the method, it already divided energy range. If the

generated state B is in some n-th energy range ∆En, then histogram at

∆En will increase by 1. Similarly, At the first time, the density of states

g(E) is unknown so all density of states are set to 1. Typically, density

of states is very large for some states therefore log space. g(E) is also

increased by update factor f . In the Wang-Landau method, every iteration

ends when H(E) is “flat” and whole calculation finish after f < 10−8. From

the calculated g(E), the partition function Z can be earned by

Z =
�

Ei

P (Ei) (3.10)

where,

lnP (Ei) = ln g(Ei)− Ei/kBT (3.11)

In this research, both methods were mixed because there is no specific

criterion of end of simulation in Metropolis method and no temperature

dependence in Wang-Landau method when it compare the states. There-

fore, the method in this research used temperature dependence of the state

from Metropolis method and simulation terminate criterion from Wang-

Landau method.

Monte-Carlo simulation was deal with 10 × 10 × 10 unit cells as shown in
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Fig 4.21. Each cells can change the state such as non-magnetic or spin

polarized Fe2MnAlC octa-1 to octa-3. Simulation followed procedure in

below.

1. Set the temperature T and set visits histogram H(E) as 0, density of

the states g(E) as 1 for all energies and set update factor f = e.

2. Give the random states for each cells and call it reference state A and

its energy is denoted by EA.

3. Make random “candidate” state and call it B and its energy is denoted

by EB.

4. if EA ≤ EB then, generate random number P in range 0 ≤ P ≤ 1.

Then, compare P with exp(−∆E/kBT ), if P ≤ exp(−∆E/kBT ), B

is the reference state, if it’s not, A is the reference state.

5. Increase H(EB) by 1 and g(EB) by f .

6. If H(E) is “flat”, set H(E) to 0 for all energies and set f as
√
f .

7. Go back to procedure 3, while f becomes smaller than 10−8.

To program this algorithm, C++ was used as a programing language.
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4 Results and Discussions

Importance of κ-carbide in light-weight steel is reviewed in chapter 1. Espe-

cially, effect of κ-carbide on mechanical properties of steels can be changed

with size and position of κ-carbide, or whether it forms lamellar structure

with other phases or not. There is remarkable results by Frommeyer and

Brüx (2006). In their research, the specific energy absorption is as high as

that of TWIP steels. This reflects that it is possible to reduce more density

with good mechanical properties. For the TWIP and TRIP steels case, low-

ering density is limited because amount of aluminum affect to stacking fault

energy so it could be lost its characteristic (Tian et al., 2008). Therefore,

figuring out exact phase diagram of κ-carbide can improve the research

about light-weight steel. In this research, first-principles calculation was

performed with various κ-carbide such as Fe3AlC, Fe2MnAlC, FeMn2AlC,

and with this result, Monte-Carlo simulation in the finite temperature was

also studied.

4.1 Lattice Parameter Optimization

κ-carbide has a anti-perovskite structure which shown in figure 1.2. Start-

ing from the lattice constants in published work of Palatnik et al. (1964),

the unit cell volume was extended and compressed to find equilibrium lat-
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tice parameter with minimum energy. The minimum energy and equi-

librium lattice parameter was fitted to the Murnaghan equation of state

(Murnaghan, 1937). In this research, all possible carbon octahedral po-

sition in Fe2MnAlC was calculated. After here, octa-1 denotes normal

anti-perovskite (Fig 1.3 (a)), octa-2 denotes Fig 1.3 (b) and octa-3 denotes

Fig 1.3 (c).

All of κ-carbides are calculated in spin-polarized condition because non-

magnetic κ-carbide had higher energy than spin-polarized phase.

Table 4.1 shows the equilibrium lattice parameter of κ-carbide in this re-

search and another literature. For Fe3AlC, calculated lattice constant is

0.6% smaller than the experimental result. this is and excellent agree-

ment with given data. Also, Fe2MnAlC is well agreed with 0.2% larger

than experimental data. In the experiment, amount of manganese is not

as much as single Fe2MnAlC, so two κ-carbides, Fe3AlC and Fe2MnAlC

would be mixed. This could explain that why experiment measures smaller

value. Because the experimental way to measure the lattice parameter such

as transmission electron microscope (TEM) or X-ray diffraction is actually

measure the distance between face to face which is the average of the lattice

parameters. When the carbon octahedral position was changed to another

octahedral position, table 4.1 shows lattice expansion for octa-2 and octa-

3. The lattice constant of Fe2MnAlC (octa-2) was increased by 1.7% with
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Calculated Literature

Calculation Experiment

a/Å V /Å3 a / Å

Fe3AlC 3.759 53.1 3.677a, 3.75b 3.781c, 3.78d

Fe2MnAlC (octa-1) 3.788 54.4 - 3.78e , 3.77∼3.79f

Fe2MnAlC (octa-2) 3.854 57.2 - -

Fe2MnAlC (octa-3) 3.858 57.4 - -

Mn3AlC 3.815 55.5 - -

Table 4.1: The calculated lattice parameter and volume of the unit cell of

κ-carbide with various compositon.

octa-1 denotes normal anti-perovskite (Fig 1.3 (a)), octa-2 denotes

Fig 1.3 (b) and octa-3 denotes Fig 1.3 (c)

a Ohtani et al. (2004)

b Connetable and Maugis (2008)

c Palatnik et al. (1964)

d Palm and Inden (1995)

e Choo and Han (1985)

f Kimura et al. (2002)
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H / kJ atom-mol−1

BCC Fe −3.3411185× 106

Graphite C −1.0001125× 105

FCC Al −6.3740864× 105

CBCC Mn −3.0414821× 106

Table 4.2: The calculated enthalpies of each atom as a reference in its pure

crystal.

respect to octa-1 and octa-3 is 1.8% larger than octa-1. Also, increase of

number manganese atom in the unit cell made the lattice expand.

4.2 Formation Enthalpy

The formation enthalpy at zero Kelvin and zero pressure (∆H) of Fe3−xMnxAlC

system, where x is the number of manganese atom in the κ-carbide, was

calculated using first-principles to figure out thermodynamic properties

when number of Mn was changed. Each Fe3−xMnxAlC system was op-

timised with respect to lattice constant by using first-principles calculation

as shown in Table 4.1. To calculate formation enthalpy, enthalpy of refer-

ence state of each atom is needed. In this research, body centered cubic

(BCC) iron, face centered cubic (FCC) aluminium, complex body centered

cubic (CBCC) manganese, and graphite carbon were calculated as refer-
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ence states. All reference states were optimised with respect to lattice

constant using first-principles calculation. In the first-principles calcula-

tion, van der Waals interaction is not reliably calculated. Instead, diamond

carbon was calculated. The enthalpy of graphite was calculated by subtract

the graphite-diamond enthalpy difference 1.895 kJ/atom-mol (Franke and

Neuschutz, 2002; Barin, 2004). Also, The cbcc Mn or α-Mn has non-colinear

magnetism which is hard to converge so, fcc Mn was calculated then, the

energy difference between cbcc or α-Mn and fcc or γ-Mn 6.8 kJ/atom-mole

was subtracted to their value (Hobbs and Hafner, 2001). Table 4.2 shows

the calculated enthalpies of the pure state of each atom.

The formation enthalpies of Fe3−xMnxAlC which were calculated by fol-

lowing Eq. 2.11 were shown in Table 4.3. All the calculated formation en-

thalpy were negative, except the Fe2MnAlC (octa-2) and Fe2MnAlC (octa-

3). Most stable state of the κ-carbide is Fe2MnAlC (octa-1) with the for-

mation enthalpy of −24.8 kJ atom-mol−1, which is 6.6 kJ atom-mol−1 lower

than Fe3AlC and 4.8 kJ atom-mol−1 less than Mn3AlC. This results reflects

that the stability of κ-carbide in the Fe-Mn-Al-C quaternary system.

Calculated formation enthalpy in this research has higher value than an-

other first-principles calculation. The result of Ohtani et al. (2004) is much

lower than the other values. This was explained by its poor convergency. To

avoiding this convergency problem caused by calculation parameters, the
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∆H / kJ atom-mol−1

Calculated CALPHAD method first-principles calculations

Fe3AlC −16.7 −18.2a, −16.0b −27.9c , −18.4d

Fe2MnAlC (octa-1) −24.8 - -

Fe2MnAlC (octa-2) 7.74 - -

Fe2MnAlC (octa-3) 6.20 - -

Mn3AlC −20.0 −27.3a -

Table 4.3: Calculated formation enthalpy ∆H of Fe3−xMnxAlC

The reference states are bcc Fe, fcc Al, cbcc Mn and graphite C in this research.

a Ref. (Chin et al., 2010)

b Ref. (Connetable et al., 2008)

c Ref. (Ohtani et al., 2004)

d Ref. (Connetable and Maugis, 2008)

convergence test was investigated and published (Seo et al., 2009). All cal-

culation parameters in this research followed the result of that convergence

test.
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Total magnetization

(T)

Fe3AlC 0.675

Fe2MnAlC (octa-1) 0.838

Fe2MnAlC (octa-2) 1.28

Fe2MnAlC (octa-3) 1.26

Mn3AlC 0.822

Table 4.4: Calculated total magnetization in the unit of Tesla (T).

4.3 Magnetism

Magnetism in Fe-Mn-Al-C was researched to figure out the relationship be-

tween magnetism and stacking fault energy. There is published report by

Tian et al. (2008). In their literature, they researched antiferromagnetic

order on SFE in the austenitic Fe-Mn-Al-C alloys. Also, magnetic con-

tribution on entropy is important when establish thermodynamic model

for magnetic element such as iron or manganese. So, Ohtani et al. (2004)

considered magnetic contribution when they calculate Gibbs free energy

(Ohtani et al., 2004). In this section, the magnetism of each κ-carbide

was studied such as magnetic moment of unit cell, total magnetization and

magnetic moment of individual atom.
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Spin magnetic moment of the atom (µB)

Al C Fe(1) Fe(2) Mn

Fe3AlC −0.06 −0.07 1.11 - -

Fe2MnAlC (octa-1) −0.07 −0.08 1.25 - 1.62

Fe2MnAlC (octa-2) −0.04 −0.01 1.46 - 3.23

Fe2MnAlC (octa-3) −0.04 −0.06 2.58 1.80 1.92

Mn3AlC −0.05 −0.08 - - 1.29

Table 4.5: Calculated magnetic moment of the atom in the muffin-tin

sphere.

Table 4.4 and table 4.5 shows the calculated total magnetic moment per

unit cell, total magnetization and magnetic moment of each atoms. Mag-

netic moment per unit cell was increased when Mn atom substitute Fe

atoms, but when all Fe atoms were substituted by manganese atoms, the

magnetic moment decrease 0.016T than Fe2MnAlC (octa-1). Carbon oc-

tahedral position in Fe2MnAlC affects greatly on total magnetization. In

the octa-2 and octa-3 structure, The Fe or Mn atoms without the nearest-

neighbor bonding with the C atom have much increase magnetic moments

of 1.33µB and 1.61µB, for Fe and Mn atoms, respectively (See Fig 1.3). In

the table 4.5, Mn atom in octa-2 have more than twice magnetic moment
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with respect to Mn in Mn3AlC and same result was shown on Fe atoms in

octa-3 and Fe3AlC.
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4.4 Electronic structure

Fig 4.1 to Fig 4.10 shows the band structure of Fe3AlC, Mn3AlC, Fe2AlC

octa-1, Fe2AlC octa-2 and Fe2AlC octa-3, where, the Ef denotes the fermi

energy which is the energy when all electrons occupies the band and den-

sity of the states at 0K. The fermi enery is set to be zero. Fig 4.13 to 4.20

shows the density of the states (DOS) of each atom in κ-carbides.

In the band structure of Fe3AlC (Fig 4.1 and Fig 4.2), there are flat d-

bands on the fermi energy between Γ and X. The electron in these band

is very sensitive to external stimulation. However, If all of Fe atoms are

substituted by Mn atoms like Mn3AlC (Fig 4.3 and Fig 4.4), The flat band

moves above the fermi level and there in no more flat band on the fermi

level. So, this explains why the formation energy of Mn3AlC is lower than

Fe3AlC. This phenomena happens because Mn atom have one less elec-

trons than Fe atom. Also in Mn3AlC, it is possible to observe the distance

between the bands become larger than those of Fe3AlC. This can be ex-

plained by repulsion because of Mn atom. For the Fe atom, all electrons

have pairs but Mn atom has odd number electron. Therefore, there is re-

pulsion between bands due to spin and it makes wider band structure. For

Fe2MnAlC (octa-1) case (Fig 4.5 and Fig 4.6), one substitution of Mn atom

only affects spin-down band structure compared to Fe3AlC. The substitu-

tion remove the flat band on the fermi level, and repulsion between band
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is smaller than Mn3AlC. With this result, Fe2MnAlC (octa-1) is the most

stable structure.

From the point of DOS, around the −3.5 eV in total DOS of Fe3AlC,

Mn3AlC and Fe2MnAlC (octa-1), there is strong hybridization (or peak)

between p-Al, p-C and d-Fe or d-Mn orbitals (Fig 4.11, Fig 4.13, Fig 4.15,

Fig 4.17 and Fig 4.19). This hybridization can be explained by the position

of the iron and manganese atoms, i.e. in the directions of the p-C and p-Al

orbitals. When carbon octahedral position changed, that strong hybridiza-

tion is decreased because p-Al and p-C make hybridization instead of Fe or

Mn, so peak near the −3.5 eV is vanished in Fig 4.12. Instead of that peak,

DOS was increased in the range from −3 eVto 2 eV. In the energetic point

of view, Fe3AlC, Mn3AlC and Fe2MnAlC is preferred more than Fe2MnAlC

(octa-2) and Fe2MnAlC (octa-3).
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Figure 4.1: Band figure for spin-up of Fe3AlC.
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Figure 4.2: Band figure for spin-down of Fe3AlC.
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Figure 4.3: Band figure for spin-up of Mn3AlC.
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Figure 4.4: Band figure for spin-down of Mn3AlC.
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Figure 4.5: Band figure for spin-up of Fe2MnAlC (octa-1).
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Figure 4.6: Band figure for spin-down of Fe2MnAlC (octa-1).
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Figure 4.7: Band figure of for spin-up Fe2MnAlC (octa-2).
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Figure 4.8: Band figure of for spin-down Fe2MnAlC (octa-2).

68



Figure 4.9: Band figure for spin-up of Fe2MnAlC (octa-3).
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Figure 4.10: Band figure for spin-down of Fe2MnAlC (octa-3).
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Figure 4.11: Total density of the states of κ-carbides (to be continue with
Fig 4.12).
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Figure 4.12: Total density of the states of κ-carbides.
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Figure 4.13: Density of the states of Al atom in κ-carbides (to be continue
with Fig 4.14).
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Figure 4.14: Density of the states of Al atom in κ-carbides.
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Figure 4.15: Density of the states of C atom in κ-carbides (to be continue
with Fig 4.16).
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Figure 4.16: Density of the states of C atom in κ-carbides.
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Figure 4.17: Density of the states of Fe atom in κ-carbides (to be continue
with Fig 4.18).
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Figure 4.18: Density of the states of Fe atom in κ-carbides.
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Figure 4.19: Density of the states of Mn atom in κ-carbides (to be continue
with Fig 4.20).

79



Figure 4.20: Density of the states of Mn atom in κ-carbides.
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4.5 Monte-Carlo Simulation

In this research, first-principles calculation result was reassessed to finite

temperature by using Metropolis and Wang-Landau hybrid Monte-Carlo

method. The specific assumptions are summarized in chapter 1.3.

In this calculation, each energies for the states used total energy which

was calculated using first-principles calculation. Free energy is calculated

from Eq 3.3, Eq 3.10 and Eq 3.11. Also, calculated density of the states

g(E) and partition function Z has no dimension and unit of calculated free

energy is J. Fig 4.22 shows the result of the Monte-Carlo result. This

result shows that there is no phase transition in given temperature range.

If there is phase transition, Free energy-temperature graph should change

its slope. Fig 4.26 shows the example of the free energy-temperature graph

with phase transition. The reason is the cell gas model doesn’t include in-

terface energy between each cells and, the temperature range was too high.

For example, the Boltzmann constant kB is 1.381× 10−23 J/K. so, 0.1 kBT

means T = 7.241×1021K and this is why the order of free energy is ∼ 1022.

Also, to validate the Monte-Carlo result, the calculated entropy was com-

pared with configurational entropy that was only considered entropy in this

cell gas model. The entropy was calculated from free energy-temperature

curve by Eq. 3.8, and from configuration by 3.7.

The free energy-temperature curve was fitted by linear function to calcu-
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Figure 4.21: Schematic figure of lattice cell gas model. There is cube that
has 103 unit cells and each cells can change the state freely in between
non-magnetic or spin polarized Fe2MnAlC octa-1 to octa-3.
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Figure 4.22: Calculated Helmholtz free energy F (T ) with respect to tem-

perature. N is the total number of the cell.

late entropy. The entropy from Monte-Carlo result was 4.85 JK−1
mol

−1

per cell and all possible configuration with 1000 cells and 6 states for each

cell is 6
1000

so, configurational entropy per cell is 14.90 JK−1
mol

−1
. Con-

figurational entropy was three times more than calculated entropy. This

results might come from implementation problem. The C++ programming

language can’t deal with number more than 10
256

however, density of the

states sometimes bigger than 10
256

, so the program in this research reduced
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Figure 4.23: Calculated entropy S(T ) with respect to temperature. N is

the total number of the cell.

the system size (10×10×10) and the number of trial visits. Therefore, lim-

ited system size and trial visits could not make enough density of the states

to calculate exact entropy of the system. By using Eq (3.5), the internal

energy of the system can be calculated. According to Eq (3.4), internal

energy U should have constant value because the Helmholtz free energy

has linear dependence to temperature. The results in Fig 4.24 shows the

constant result of calculated internal energy. There is some fluctuations but
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Figure 4.24: Calculated internal energy U(T ) with respect to temperature.
N is the total number of the cell. The small figure shows magnified internal
energy with respect to their average value.

the fluctuation amplitude is very small with respect to internal energy. Fig

4.25 shows the calculated specific heat. The specific heat is also calculated

from partition function by following Eq (3.6). Also, it can be calculated

from internal energy by

C =
∂U

∂T
(4.1)
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Figure 4.25: Calculated specific heat C(T ) with respect to temperature. N
is the total number of the cell.

Because U is constant with respect to temperature, the specific heat should

have 0. In the result, the specific heat has constant value and that is close

to 0. The reason for this results is the fluctuation in free energy, internal

energy and entropy.

In summary, even the result of Monte-Carlo simulation didn’t expect the

exact entropy and the other thermodynamic value, it reflects the general

physics of the system well such as tendency and order of free energy, internal
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Figure 4.26: Schematic temperature dependence of the free energy and the
internal energy for a system undergoing a first order transition (left) and
second order transition (right)(Landau and Binder, 2009).
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energy, entropy, and specific heat.
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5 Conclusion

The structural , magnetic and thermodynamic properties of κ-carbides

was investigated using first-principles calculations based on the FLAPW

method within GGA. Also, calculated first-principles result was reassessed

by using Monte-Carlo simulation. The calculated equilibrium lattice pa-

rameter of κ-carbides agrees well with published experimental data.

The calculated formation enthalpies are -16.7 kJ atom-mol−1, -26.2 kJ atom-

mol−1 and -24.0 kJ atom-mol−1 for Fe3AlC, Fe2MnAlC (octa-1) and Mn3AlC,

respectively. The calculated formation enthalpies shows that Fe2MnAlC

(octa-1) is the most preferred state. Therefore, it is possible that when

κ-carbides form, Fe2MnAlC (octa-1) will form first until Mn becomes in-

sufficient in the Fe-Mn-Al-C steels. When the carbon octahedral position

was changed, the formation energy becomes positive value and this is ex-

plained by p-Al, p-C and d-Fe and d-Mn orbital hybridization breaking in

DOS.

The Monte-Carlo cell gas simulation shows the different entropy value

with configurational entropy. This result might be caused by implemen-

tation problem. However, this simulation well predict temperature depen-

dence of the free energy, internal energy, entropy and specific heat for non-

interacting cell gas model.
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In the future work, we hope we imply the interaction between cells and the

implementation problem will be solved and we can draw the phase diagram

of κ-carbides from first-principles calculation and Monte-Carlo simulation

by the implementation of the result into thermodynamic database such as

MTDATA.
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