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Abstract 

 

The purpose of this research programme is to develop quantitative 

models for the prediction of mechanical properties (hardness and fracture 

toughness) using experimental data collected from the literature, together with 

a powerful computational technique known as neural network. Creating a truly 

general model requires a combination of available data and metallurgical 

knowledge. These models are proposed for martensitic and ordinary bainitic 

steels in addition to the more recent class of non-structural super-bainitic 

steels. Super-bainitic steels are attractive for many applications such as 

armour. 

Three general neural-network models are developed for the estimation 

of hardness, volume percent of bainite and fracture toughness. The first model 

of hardness is validated through new experiments, carried out in this work, for 

certain types of steels. The model gave precise predictions. The second neural 

network model is successfully used to predict the volume percent of bainite 

for a wide range of steels including super-bainitic steels. The third model of 

fracture toughness, whether based on mechanical properties alone or chemical 

composition alone did not yield good predictions for plane-strain fracture 

toughness. However, a refined version of this last model based on chemical 

composition, heat treatment and mechanical properties is proposed. The 

predictions of fracture toughness are generally acceptable but the uncertainties 

are high and more input data need to be collected for super-bainitic steels 

when available in the future to improve the predictions of this model. 



For verification of the hardness model, some experiments were carried 

out in this investigation on different steels. It is possible, through the 

application of thermodynamics and kinetics principles, to control the 

microstructure and study the variation in mechanical properties. Accordingly, 

one of the alloys studied was free from thermal cracks and has been 

recommended for use in the automobile industry. Reduction of the 

austenitisation temperature to a level just above the upper critical temperature 

(Ae3) reduced the probability of the appearance of thermal cracks after direct 

quenching.  

The super-bainitic microstructure of a high carbon, high silicon low 

alloy steel was found to be resistant to tempering, and the hardness and tensile 

properties of the alloy was not greatly affected by tempering. Fracture 

toughness however showed in general a decrease with increasing tempering 

temperature. 

An instructional package was also designed and executed to study the 

principles of the phase of bainite and neural network it was found that the 

instructional package has a great effect on learner’s behavior in steels 

learning.    

 

 

 

 

 

 



 

 

 

 

1 INTRODUCTION  

 1.1 Introduction 1 

 1.2 Research work layout 3 

2 MICROSTRUCTURE & MODELLING: REVIEW 

Transformation and Microstructure of Bainite 

  2.1 Bainite   4 

 2.2 Mechanisms of transformation 6 

 2.3 The T0 concept  9 

 2.4  Isothermal Transformation to Bainite 12 

 2.5 Super Bainite 14 

 2.6 Tempering of Bainite 17 

 2.7  Mechanical properties 18 

  2.7.1 The Strength of Bainite 18 

  2.7.2 Hardness 19 

  2.7.3 Fracture Toughness 21 

Neural Network Modelling 

 2.8 Introduction 24 

  2.8.1  Bayesian Neural Networks 24 

  2.8.2 Structure of neural network 25 

Contents 
 



  2.8.3 Training of neural network 27 

  2.8.4 Optimization of model complexity 29 

  2.8.5 Significance 32 

  2.8.6 Procedure to create an optimised model from neural 
network 

33 

3 EXPERIMENTAL PROCEDURE 

 3.1 Introduction 36 

 3.2 Experiments to validate the hardness model 38 

  3.2.1 Material 38 

  3.2.2 Dilatometry heat treatments 38 

   3.2.2.1 Isothermal hardening experiments 40 

   3.2.2.2 Quenching experiments 40 

  3.2.3 Hardness measurements 41 

  3.2.4 Optical microscopy   41 

 3.3 Experiments to validate the plane strain fracture toughness 
model 

 41 

  3.3.1 Material  41 

  3.3.2 Furnace heat treatments    42 

3.3.3 X-ray diffraction analysis   43 

3.3.4  Plane strain fracture toughness tests   43 

  

3.3.5 Tensile tests   46 

4 HARDNESS 

  4.1 Introduction    48 

 4.2 Vickers Hardness    49 



 4.3 Hardness database   50 

 4.4 Model training   56 

 4.5 Application of model   60 

  4.5.1  Effect of alloying elements on hardness  61 

  4.5.2  Volume fraction of bainite and transformation 
temperature  

70 

 4.6 Comparisons between models  77 

 4.7 Conclusions 83 

5 BAINITE   

 5.1 Introduction  84 

 5.2      Previous models  86 

 5.3      Bainite database  87 

 5.4 Model training  90 

 5.5 Application of model  93 

 5.6 Predictive ability  94 

 5.7 Conclusions  101 

6 PLANE-STRAIN FRACTURE TOUGHNESS   

 6.1 Introduction  102 

 6.2 Plane-strain fracture toughness database  103 

  6.2.1 Input variables for mechanical properties model 104 

  6.2.2 Input variables for chemical composition model 105 

  6.2.3 Input variables for chemical composition, heat 
treatment and mechanical properties model 

108 

 6.3 Models training  111 



  6.3.1 Training Mechanical Properties model  112 

  6.3.2 Training chemical composition model  115 

  6.3.3 Training the chemical composition, heat treatment and 
mechanical properties model 

117 

 6.4 Predictive ability 119 

  6.4.1 Predictive ability of the model mechanical properties 119 

  6.4.2 Predictive ability of the model chemical composition       121 

  6.4.3 Predictive ability of the model chemical composition, 
heat treatment and mechanical properties 

123 

   6.4.3.1 The predictions for super-bainite alloy RR1 125 

 6.5 Comparing the performance of the main three models 128 

  6.6 Modified model chemical composition, heat treatment and 
mechanical properties. 

129 

 6.7 Model predictions 133 

  6.7.1 Effect of chemical composition on plane strain fracture 
toughness 

134 

  6.7.2 Effect of austenitisation temperature on plane strain 
fracture toughness 

139 

  6.7.3 Effect of mechanical properties on plane strain fracture 
toughness 

140 

  6.7.4 The combined effects 141 

 6.8 Predictive ability 147 

 6.9 The need for more data 153 

7 RESULT AND DISCUSSION 

 7.1 Introduction 154 

 7.2 The results of experiments related to the model of hardness 154 



  7.2.1 MT-DATA 155 

  7.2.2 Martensite start temperature 158 

  7.2.3 Hardness 158 

  7.2.4 Kinetics 160 

  7.2.5      Optical microstructures 163 

  7.2.6      Bainite in the alloy 166 

 7.3 The results of experiments related to the model of fracture 
toughness 

168 

  7.3.1 Hardness 168 

  7.3.2 XRD test results 172 

  7.3.3 Tensile properties 176 

  7.3.4 Fracture toughness 177 

   7.3.4.1 The fracture surface 180 

 7.
4 

Conclusions 183 

8 GENERAL CONCLUSIONS AND PROPOSED FURTHER 
RESEARCH 

 

 8.1 Conclusions 179 

 8.2 Further research 181 

 REFERENCES 188 
 

 

 



 1 
 

 

 

 

 

 

 

 

 

 

1.1     Introduction 

There are so many phases changes that occur in steels that it is 

possible to generate many varieties of microstructures and mechanical 

properties [1]. This permits a wide range of applications but the 

complexity makes it difficult to understand and design from first 

principles. 

The aim of this thesis is to understand the phase transformation 

diagrams for a certain class of steels, and to study the effect of the 

microstructure on the mechanical properties. Also it is intended to 

develop quantitative models for the complex properties using 

experimental data collected from the literature, together with a powerful 

computational technique known as neural network analysis to estimate 

the mechanical properties (hardness and fracture toughness) as a function 

of many material variables.  

Creating a model using this method requires a large amount of data 

and it is sometimes not possible to accomplish this task easily. Creating a 

Chapter 1 

Introduction  
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truly general model requires a combination of data and metallurgical 

knowledge. In building these models, the intention was to include data for 

super-bainitic steels (high carbon high silicon low transformation 

temperature bainite) in addition to the ordinary bainitic and martensitic 

steels. Super-bainitic steels have found application in armour because of 

their ballistic properties [2, 3].    

Some examples of neural network models are as follows. Yescas-

González has recently completed a model about the Vickers hardness in 

austempered ductile irons [4]. Many models have been developed in 

recent years. They are summerized in Dimitriu's thesis [5]. The latter 

includes prediction of the creep strength of austenitic stainless steel [6], 

modelling precipitation sequences in power plant steels [7, 8], irradiation 

hardening in low activation steels [9], the martensite-start temperature of 

steels [10], the Charpy toughness [11], modelling recrystallization in 

mechanically alloyed materials [12], the mechanical properties of hot 

rolled steels [13], and of the yield stress in highly irradiated ferritic steels 

[14]. 

Bayesian neural networks is adopted in this work in order to handle 

complex data and modelling uncertainties. The hardness, fracture 

toughness and bainite volume percent are modelled as a function of 

chemical composition and heat treatment. Some experimental work is 

carried out on specific steels to verify the output of the models. 
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1.2     Research work layout 

This thesis contains eight chapters, the first one being the current 

chapter: 

Chapter two describes the physical metallurgy of bainite (ordinary and 

super-bainitic) and its mechanical properties, followed by part two, which 

covers Bayesian neural network theory.   

Chapter three includes details about the experimental work involving 

hardness and plane strain fracture toughness determinations.  

Chapter four describes the neural network model which enables the 

estimation of hardness as a function of chemical composition, heat 

treatment and bainite volume fraction. 

Chapter five deals with the estimation of the volume percent of bainite 

as a function of chemical composition, heat treatment and hardness.  

 Chapter six concerns the construction of a neural network model which 

estimates the fracture toughness KIc in steels as a function of chemical 

composition, heat treatment and other mechanical properties. 

Chapter seven presents the results of the experimental work.  

Chapter eight has the conclusions of the work and lists suggestions for 

future subjects of research.  
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 The objective of this chapter is to reveal the mechanism of the 

formation of the structure of bainite and how it affects the mechanical 

properties. It is also intended to introduce neural network theory and how 

it can be used to represent complex relationships.    

 

Transformation and Microstructure of Bainite 

 

2.1 Bainite 

It is found that bainite forms during the decomposition of austenite 

over a wide range of temperatures (200-550) °C. Neither pearlite nor 

martensite phases are formed during this transformation depending of 

course, on the composition of the steel. Figure 2.1 shows the time-

temperature-transformation (TTT) diagram which consists of two 

separate C-shaped curves. The one at high temperatures describes the 

evolution of diffusional transformation phases such as ferrite and pearlite, 

the lower C- curve represents displacive reactions such as 

Widmanst tten ferrite, bainite and martensite (martensite forms below 

the Ms temperature). Bainite also forms during athermal treatments at 

Chapter 2 
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cooling rates too fast for pearlite to form and not rapid enough to produce 

martensite [15]. 

The microstructures of bainite are classified according to 

morphology, as upper and lower bainite as shown in figure 2.2. Upper 

and lower bainite consists of clusters of platelets of ferrite which share 

identical crystallographic orientation and which are intimately connected 

to the parent austenite phase in which they grow. Very thin bainitic plates 

are called subunits and they grow in clusters known as sheaves. Within 

each sheaf, the subunits are parallel and of identical crystallographic 

orientation and habit plane. Each bainitic ferrite plate is about 10 µm long 

and 0.2 µm thick [16]. 

  

 

 

 

 

 

 

 

Figure 2.1: TTT curve for a Fe-0.5C-3Cr (wt%) steel [17]. 
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Figure 2.2: Illustration of upper and lower bainite showing the main 

differences in carbon partitioning and precipitation [18]. 

2.2 Mechanisms of transformation 

 There are two mechanisms of solid-state transformation in steel as 

shown in figure 2.3. The transformation of bainite is displacive (shear) 

with  no diffusion of iron atoms and substitutional elements [16, 19], so 

atoms move in a disciplined manner in order to change the crystal 

structure from face-centred cubic (fcc) to body-centred cubic (bcc) or 

body-centred tetragonal (bct). 

It is observed that the bainite phase forms at temperatures lower 

than that necessary for Widmanst tten ferrite to form [16]. 

Widmanst tten ferrite has the same mechanism of transformation as 

bainite (displacive) but the carbon must diffuse during paraequilibrium 

nucleation and growth. In contrast, with bainite carbon diffuses during 

paraequilibrium nucleation but growth is diffusionless.  
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  As a result of transformation, surface relief has been observed in 

steels that undergo either the bainite or the Widmanst tten ferrite 

transformation [16]. Swallow and Bhadeshia directly observed the 

deformations [20].  However, the conclusive aspect concerning the 

evolution of these intermediate displacive transformation products is the 

kinetics associated with carbon partitioning.  

Bhadeshia envisaged that both bainite and Widmanst tten ferrite 

have the same nucleus [16]. The stored energy for bainite and 

Widmanst tten ferrite are about 400 J mol-1 and 50 J mol -1 respectively 

[21]. The chemical free energy change has to be sufficient as to exceed 

the stored energy for a transformation to take place. 

The much higher stored energy in bainite was explained in terms of 

the absence of favourable strain interactions `within' bainite sheaves [21]. 

Bainite growth is diffusionless but the transformation is able to occur 

above Ms because nucleation involves the partitions of carbon and hence 

has a larger driving force than the diffusionless nucleation of martensite 

[21]. 

Speer et al. [22, 23],  Muddle and Nie [24] and Saha et al. [25] 

proposed the same growth mechanism for bainite, that bainite may grow 

by a martensitic growth mechanism which is diffusionless followed by, or 

along with, carbon partitioning into austenite with overall kinetics 

controlled by carbon diffusion. Table 1 summarises the essential details 

of the mechanisms of displacive transformations for Widmanst tten 

ferrite, bainite and martensite. 
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Figure 2.3: Schematic illustration of the types of transformation in 

steels [17]. 
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Table 2.1: Mechanisms of displacive transformations [26]. 

Phase Martensite  Bainite  
Widmanst tten ferrite 

 

Nucleation 

Growth 

Diffusionless 

Diffusionless 

Paraequilibrium1 

Diffusionless 

Paraequilibrium 

Paraequilibrium 

 

 

2.3 The T0 concept  

The structure of a bainitic steel is composed of retained austenite, 

bainitic ferrite and carbides. Carbides, however, can be suppressed by 

alloying with elements such as Si, Al and P [27, 28]. It is essential to 

understand the issues governing the formation of carbides in different 

varieties of steel and the mechanical properties achievable in greater 

detail. 

The diffusionless mechanism of bainite growth has to occur at a 

temperature just below T0 as shown in figure 2.4 when the free energy of 

bainitic ferrite drops below that of austenite of the same composition. The 

stored energy in bainitic ferrite is accounted for by raising its free energy 

curve by an amount equal to the strain energy due to transformation, 

giving the curve, figure 2.4. 

 The excess carbon in the bainite partitions into the residual 

austenite during isothermal transformation, forcing the next plate to grow 

                                                      

1 Paraequilibrium implies partitioning of carbon between parent and product phases, subject to 
constraint that the ratio of substitutional solute to iron atoms in maintained constant.  
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from carbon-enriched austenite [16]. As the austenite carbon content 

reaches the  value, the process finally stops leading to the so-called 

incomplete reaction phenomenon [29]. It is important to realise that this 

scenario is valid only for carbide-free bainitic steels, since otherwise, the 

precipitation of cementite permits the reaction to proceed to completion.  

 Application of the lever-rule gives: 

                                                                                      (2.1) 

where  the volume fraction of bainite, the austenite carbon content 

given by the  boundary,  is the alloy average carbon concentration 

and is the carbon concentration of the bainite. 
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                                              Carbon concentration 

Figure 2.4: Schematic illustration of the construction of the  and  

curves [16]. T1 is the temperature corresponding to the free energy 

curves, Ae1 refers to the equilibrium (!+!)/! phase boundary and Ae3 

refers to the equilibrium (!+!)/! . 

The thermodynamic restriction imposed by the  curve on the 

extent of bainite transformation can result in the formation of pools of 

retained austenite with a coarse, blocky morphology. However, austenite 

also appears in the form of thin films trapped in between bainite plates, as 

shown in figure 2.5. 
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Figure 2.5: Bright-field TEM (transmission electron microscope) 

micrograph showing the fine scale of retained austenite films (!) and 

a bainitic plates (") [21]. 

2.4 Isothermal Transformation to Bainite 

The mechanical properties of carbide-free bainite are dependent on 

the phase fraction and carbon concentration of retained austenite; both of 

which are dependent on the temperature and time of transformation [29-

32]. 

The effect of the bainite transformation temperature on the extent 

of transformation is shown in figure 2.6 for the same holding time. It is 

clear that the fraction of bainite transformed is greater at higher 

temperatures. Figure 2.6 also shows that silicon enhances the retention of 

the residual austenite. Large concentrations of silicon in all the steels 

developed to generate super-bainite (nanostructured bainite) prevent the 

precipitation of cementite during the course of transformation [2, 33-36]. 
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It may be possible to use lower concentrations and yet maintain a carbide-

free phase mixture, but the theory necessary to reach this conclusion is 

not established. 

 

Figure 2.6: Volume fraction of bainite as a function of 

transformation time for (a) Fe-0.29C-1.4Mn-1.5Si; (b) Fe-0.16C-

1.3Mn-0.38Si (wt%) [28]. 

(a) High Si 

(b) Low Si 
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2.5 Super Bainite 

It would be nice to have a strong material which can be used for 

making components which are large in three dimensions and which do 

not require mechanical processing or rapid cooling to reach the desired 

properties. A steel designed on this basis has been manufactured and 

characterized by Caballero et al. [30] and Garcia-Mateo et al. [21, 31]. 

Many researches [5, 18-22] have developed a high carbon-high silicon 

carbide-free bainite with very thin austenite films forming an intimate 

composite, with a controlling scale of 20-30 nm. 

The strength of bainite comes from the fine scale of the structure. 

There is a considerable plastic relaxation in the austenite adjacent to the 

bainite plates, figure 2.7. The dislocations generated in this process resist 

the advance of the bainite/austenite interface, the resistance being greatest 

for strong austenite. The strength of austenite is the most important factor 

which determines the thickness of bainite [32]. Because of that, the plates 

become thicker at high transformation temperatures since the yield 

strength of the austenite will then be lower. 

There are also other factors such as the driving force and the 

transformation temperature itself [32]. A large driving force increases the 

nucleation rates. As a result, a larger driving force also leads to a finer 

microstructure [37]. Though austenite strength is the most important 

factor that determines the thickness of the bainite, austenite strength and 

free energy change during transformation are both influenced by 

temperature. A lower transformation temperature makes austenite strong 

and the driving force large. This leads to thinner plates of bainite. In order 

to get extremely fine bainite, it is necessary to transform at low 

temperatures. There are two equations which account for the relationship 
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between strength and grain size. One is the Hall-Petch equation and the 

other is due to Langford and Cohen. When the slip distance is less than 

about 1µm, the Langford and Cohen relationship is more reasonable [33]. 

For a given thickness t of a plate the mean linear intercept, , is roughly 

two times the thickness and the strength contribution   due to the size 

of the plate is given by 

  MPa                                (2.2) 

where  is in micrometers according to Langford and Cohen relationship 

[33]. That means it is possible to get  !"=311 MPa for plates of thickness 

185 nm, whereas  !"=1642 MPa for plates of thickness 32 nm, giving an 

additional strength of more than 1 GPa without sacrificing toughness. 

Extremely fine bainitic structures which consist of bainite plates and 

carbon-enriched austenite without carbide precipitation have been 

developed [30, 34, 35]. The microstructure exhibits an excellent 

combination of strength and ductility. The strength comes mainly from 

the fine scale of the structure rather than carbon, even though the steels 

contain about 1 wt % of carbon. 
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Figure 2.7: (a) A perfect invariant plane strain surface relief effect. 

(b) One where plastic relaxation of the shape change occurs in the 

adjacent matrix. (c), (d) An actual atomic force microscope scan 

across the surface relief due to a bainite sub-unit, the planes were flat 

before bainitic transformation [20, 28]. 

 The applications, advantages, mechanical properties, 

characteristics and design strategies of these extremely fine, carbide-free 

bainitic structures are well documented [2, 3, 36, 38, 39]. Ultimate tensile 

strengths of 2500 MPa have been routinely obtained with ductilities in the 

range 5-30 % and toughness in excess of 30-40 MPa m1/2. The bainite is 

also the hardest ever achieved, about 700 HV.  

The most useful advantage of the steel is the simple way in which 

the process avoids rapid cooling so that residual stresses are avoided, 

even in large pieces. There are many adjectives that have been given to 

the bainitic microstructure described above: cold bainite, hard bainite, 

strong bainite and super bainite [36]. 
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2.6 Tempering of Bainite 

 The microstructure and properties can change during tempering 

and this is dependent on how the sample deviates from equilibrium. The 

behaviour of bainite during tempering is expected to be different from 

that of martensite. 

 Rapid softening occurs when the plate-like structure of ferrite 

changes into equiaxed ferrite and the coarsening of cementite is 

associated with this change [16]. Further tempering has minimal effects. 

 Carbon is a very effective solid solution strengthener so the 

strength of martensite drops sharply as the carbon precipitates during 

tempering [16, 17]. With bainite the carbon is mostly present as coarse 

carbides which contribute little to strength. 

 Tempering of mixture of bainite ferrite and carbon-enriched 

returned austenite usually at temperatures in excess of 400 °C, induces 

the decomposition of the austenite into a mixture of ferrite and carbides. 

Secondary hardening occurs when fine (more stable) alloy carbides form, 

such as Cr, V, Mo and Nb at the expense of cementite.  The secondary 

hardening reaction tends to be sluggish when compared with martensite, 

because the alloy carbides require the diffusion of substitutional solutes.  

The hardness and tensile strength of fully bainitic microstructures 

decrease during tempering; the rate of change is large for lower bainite 

which has higher starting hardness. As might be expected, it is the highest 

strength steels which undergo the largest change in strength during 

tempering. The yield strength is found to be low in bainitic steels 

containing retained austenite due to the mixed microstructure and the 

presence of free dislocations.  
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Bhadeshia envisaged that there are significant differences in the 

tempering behaviour for both bainite and martensite [16].  

2.7 Mechanical properties 

 There were difficulties in obtaining fully bainitic microstructures in 

sizeable samples of steel. It has long been recognised that the influence of 

bainite on the mechanical behaviour of steel is difficult to understand 

because of the inability to attain fully bainitic microstructures at all 

transformation temperatures, a consequence of the incomplete reaction 

phenomenon.  

2.7.1 The Strength of Bainite 

 The strength of bainite can be factorized into a number of intrinsic 

components [16, 40]: 

                             (2.3) 

where ci is the concentration of a substitutional solute which is 

represented here by a subscript (i); the other terms in this equation are KL 

coefficient for strengthening due to lath size, 115 MN m-1, assuming that 

the cementite particles are spherical and of  uniform size,  Kp is given 

approximately by 0.52 V! MPa, where  V! is the volume fraction of 

cementite, KD  the coefficient for strengthening due to dislocations, 

7.34!10-6 MN m-1, the strength of pure annealed iron !Fe, substitutional 

solid solution strengthening contributions !ss, strengthening due to carbon 

in solid solution !c, and a variety of microstructural components, !D 

dislocation density, typically 1016 m-2,  is a measure of the ferrite plate 

size, typically 0.2 µm.    

2.7.2 Hardness 
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The hardness of bainite increases linearly with the carbon 

concentration. The austenitising temperature does not influence the 

hardness unless it is not high enough to dissolve all the carbides [41]. For 

mixed microstructures, the hardness depends on the transformation 

temperature and composition [42]. This is because the stability of the 

residual austenite to martensitic transformation changes with carbon 

concentration, the limiting value of which depends on the transformation 

temperature according to the To curve of the phase diagram.   

           Figure 2.8 shows that for a series of Fe-Cr-C alloys, the hardness 

for the 0.08 wt% C alloy is insensitive to the isothermal transformation 

temperature. The low carbon concentration ensures that the 

microstructure is almost fully bainitic for all temperatures studied. 

 This contrasts with higher carbon alloys, where the hardness first 

decreases as the transformation temperature is reduced; this is because the 

fraction of bainite increases at the expense of residual phases like 

martensite and pearlite. 

The micro-hardness of bainite, in a mixed microstructure of bainite 

and pearlite obtained by isothermal transformation, is found to be less 

than that of the pearlite, figure 2.9. This remains the case even when the 

pearlite and bainite have been generated at the same temperature. This 

behaviour is easy to explain once it is realised that the pearlite grows 

from carbon-enriched austenite and hence contains a much larger fraction 

of cementite than the bainite. 

The hardness of bainite is insensitive to the austenite grain size, 

even though the latter influences the bainite sheaf thickness. 

 This is expected since the bainite sub-units size is hardly 

influenced by the austenite grain size. Since the sub-units are much 
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smaller, they exert an overriding influence on strength. For the same 

reason, the hardness of fully bainitic microstructures is not sensitive to 

the austenitising temperature [16].   

 

 

 

 

 

 

 

 

 

Figure 2.8: Variation in hardness as a function of the isothermal 

transformation temperature [16].   
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Figure 2.9: Micro-hardness data from plain carbon steels 

transformed isothermally to a mixture of bainite and pearlite [16].  

2.7.3 Fracture Toughness 

Fracture mechanics is a tool of engineering analysis that makes it 

possible to determine whether a crack of given length in a material of 

known fracture toughness is dangerous or not, and if it will propagate to 

failure at a given stress level. It also permits the selection of the design 

which is most resistant to fracture. 

Most bainitic steels are used in high-strength applications, and 

failure is not usually accompanied by a large amount of plasticity, 

therefore elastic theory is used to represent the stresses. 

Fracture toughness is an indication of the amount of stress intensity 

required to propagate a pre-existing flaw. It is an important material 

property since the occurrence of flaws is not completely avoidable in the 

processing, fabrication, or service of a material or component. Flaws may 

appear as cracks, voids, metallurgical inclusions, weld defects, design 

discontinuities, or some combination thereof. Since engineers can never 

be totally ensure that a material is flaw free, it is a common practice to 

assume that a flaw of some chosen size will be present in components and 

linear elastic fracture mechanics (LEFM) approach is used to design 
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critical components. This approach uses the flaw size and features, 

component geometry, loading conditions and the material property called 

fracture toughness to evaluate the ability of a component containing a 

flaw to resist fracture. 

A single parameter called the stress intensity factor K represents 

the elastic stress field near a crack tip. The magnitude of this stress 

intensity factor depends on the geometry of the solid containing the crack, 

the size and location of the crack, and the distribution of the load imposed 

on the solid. The criterion for brittle fracture in the presence of a crack-

like defect is that unstable rapid failure would occur when the stresses at 

the crack tip exceed a critical value. The crack tip stresses can be 

described by the stress intensity factor K, a critical value of which can be 

used to define the conditions for brittle failure.  

   The critical value of K is designated Kc which is considered as a 

material property that describes the inherent resistance of the material to 

failure in the presence of a crack-like defect. For a given type of loading 

and geometry, the relation is [43]:  

                                                                             (2.4) 

where Y is a parameter which depends on specimen and crack geometry 

and ac is the critical crack length. If KIc is known, it is possible to 

compute the maximum allowable stress for a given flaw size. 

KIc is a basic material property in the same sense as yield strength. 

It changes with important variables such as temperature and strain rate. 

For the materials with a strong temperature and strain rate dependence, 

KIc usually decreases with decreasing temperature and increased strain 

rate. For a given alloy, KIc is strongly dependent on such metallurgical 



 23 
 

variables as heat treatment, texture, melting practice, impurities 

inclusions, etc. [43].  

There has been so much research activity and rapid development in 

the field of fracture toughness testing that in a period of few years, it has 

evolved from a research activity to a standardized procedure. In the 

discussion of the influence of a notch on fracture, it has been shown that a 

notch in a thick plate is far more damaging than in a thin plate because it 

leads to a plane strain state of stress with a high degree of triaxiality. The 

fracture toughness measured under plane strain condition is obtained 

under maximum constraint or material brittleness. 

The plane strain fracture toughness when the crack is loaded in 

tensionis designated KIc and is a true material property. The minimum 

thickness to achieve plane strain conditions and valid KIc measurements 

is: 

                                                                              (2.5) 

where !0 is the 0.2 percent offset yield strength. 

 

 

 

 

Neural Network Modelling 

2.8 Introduction 



 24 
 

It is very important to understand the mechanical behaviour of 

metals. By using simple methods, it is possible to estimate, for example, 

the yield strength and elastic modulus, taking into account the size and 

distribution of defects and overall microstructure. When the number of 

variables becomes large and their effects are ill understood, it is very 

difficult to find a facility for estimating sophisticated properties. Neural 

networks have been used to deal with complex properties such as 

toughness [44, 45] and fatigue [46, 47]. 

A neural network is a powerful non-linear regression method [48-

50]. The function to which the data are fitted is an outcome of the 

process. Neural networks are able to capture almost arbitrarily non-linear 

relationships.    

2.8.1 Bayesian Neural Networks 

Bayesian probability theory provides several benefits: 

1. Solve the over-fitting problems using Bayesian method to control 

model complexity. 

2. Find significance the weight variance !w of each input [49].  

The details of the operation and construction of neural networks 

has been reviewed elsewhere [48-54], but it is useful to summarise the 

main features here. It is assumed that the material property of interest, 

for example the plane strain fracture toughness KIc, can be expressed 

as a non-linear function, f, of a number of experimental variables in 

the database. 

                                                 (2.7) 

where Ci represents the chemical composition of the steel, Ta is the 

austenitising temperature, T1 and T2 represent the transformation 
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temperature due to first and second stages, t1 and t2 the time incurred for 

the first and second stages of transformation, !y the yield stress of the 

material, !u the ultimate tensile stress, HV the Vickers hardness and “...” 

represents all the other parameters that might influence the KIc. 

The purpose of neural network training is to make as few 

assumptions as possible about the form of a function, and attempting at 

the same time to find and copy its shape. In fact, the only assumptions are 

that the function is continuous and differentiable. It has been shown that a 

three-layer network of the form described below can produce such 

function [51, 54, 55]. The network is thus able to react flexibly to capture 

any non-linear interactions between the parameters. 

2.8.2 Structure of neural network 

The present work has been represented, as shown in figure 2.10, by 

a three-layer feed-forward network of the type used commonly for 

material property applications. The first layer consists of the inputs to the 

network; the next layer consists of a number of non-linear functions 

which form the "hidden" layer of neurons. hi can be any non-linear, 

continuous and differentiable function, depending on the complexity of 

the model, hyperbolic tangents  has been used in this work (Equation 

2.8). Many hyperbolic tangents can be used if one function is not flexible 

enough to represent the complexity in the data. Figure 2.11 shows the 

summation of two hyperbolic tangents. The third layer consists of the 

output function, y. The hidden layer activation function for a neuron i is 

given by [51]: 

                                                            (2.8) 
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The output y is a linear combination of many hidden units hi together with 

bias: 

                                                                          (2.9)      

The xj are the inputs, and w the weights which define the network. 
(1) and (2) denote weights and biases in the hidden layer and in the output 

layer, respectively. The aim of training a network is to find the optimum 

values for w. The parameters ! are known as biases, and are like the 

constants that paper in regression analysis  

 

 

 

 

 

 

Figure 2.10: A schematic diagram of a three-layer feed-forward 

network. The model’s complexity is controlled particularly by the 

number of neurons in the second layer, known as hidden units. 
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                              (a)                                       (b) 

Figure 2.11: (a) Flexibility of a hyperbolic tangent function. A model 

with one hidden unit (left) may not be sufficiently complex. (b) The 

combination of two hyperbolic tangent functions tanh1 and tanh2 can 

form a more complicated  model (right) [55]. 

2.8.3 Training of neural network 

The data are divided randomly into a training and testing set, and 

normalised within a range of ±0.5, in order to simplify the interpretation 

of the weight. The normalisation function is    

                                                      (2.10)      

where x is the original value, xmin and xmax are the minimum and 

maximum values in the database for that input, and xj is the normalised 

value. The purpose of normalising, which is not an essential for the neural 

network, is to give a convenient way to compare the results of predictions 

for different inputs each of which otherwise may have vastly different 

range.  

The number of “hidden” units is related to the complexity of 

network models, as the number of hidden units increases the complexity 

increases. The trained network is not a black box because the inputs and 

outputs are known, and the weights can be examined, although they may 
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be difficult to interpret directly because of the complexity of non-liner 

problems. The best procedure is to steady a large number of trends in the 

predictions made using the trained network. 

Due to the flexibility of neural network, there is the possibility of 

over-fitting the training data. Training a network therefore includes 

finding a set of weights and biases which minimise an objective function 

(Equation 2.11), and balances both of complexity and accuracy: 

                                                                       (2.11) 

where Ew is a regulariser; it is a function which favours small values of w 

and thus encourages the model to find simpler solutions with less 

tendency to over-fitting, and is given by: 

                                                                             (2.12) 

   ED is the overall error given by: 

                                                                   (2.13) 

where tk is the set of outputs for the set of inputs xk, while yk is the set of 

corresponding network outputs, ! and " are control parameters which 

determine the complexity of the model.  MacKay’s algorithm allows the 

inference of these parameters from the data, permitting automatic control 

of the model complexity [48, 51]. Figure 2.12 shows a set of data which 

was split into training (the filled triangles) and testing (the stars) sets. 

Based on the training set, two models were trained. The first one (a) 

represents linear regression and it can be seen that it only gives a poor 

representation of both the training and the testing data. The second model 
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(b) represents a complex function which gives an excellent representation 

of the training data but a poor one for the testing data [5].  

 

  

                       Figure 2.12: Under-fitting and over-fitting [5]. 

2.8.4 Optimization of model complexity 

To carry through the training, the data are split at random into two 

sets, a training set and a test set. The model is trained on the training set, 

and then is compared against the test set of unseen data. Figure 2.13 

shows how increasing the complexity continuously lowers the training 

error, while the test error goes through a minimum and increases again. 

As the model’s complexity increases, over-fitting causes the test error to 

increase as the number of hidden units increases. The aim of the training 

is to minimise the test error against the data set and against new data not 

seen by the model. 

For these models, the fitting method is based on a Bayesian 

approach and treats training as an inference problem, allowing estimates 

to be made of the uncertainty of the model fit figure 2.14. Rather than 

trying to identify one best set of weights, the algorithm infers a 

probability distribution for the weights from the data presented.  

(a) linear regression model                (b) over-fitted model 
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Figure 2.13 Comparison of error on training and testing set as a 

function of network complexity, illustrating the problem of over-

complex models.  

In this context, the performances of different models are best 

evaluated using the log predictive error (LPE) rather than the test error. 

This error penalises wild predictions to a lesser extent when they are 

accompanied by appropriately large error bars [51] and is defined by: 

                                       (2.14) 

where tk and yk are as previously defined , and  is related to the 

uncertainty of fitting for the set of inputs xk. Starting from the best model, 

the committee models are selected until the minimum test error is 

obtained.  

Therefore the committee of models is used for a final prediction. 

The following formula gives the error bars for predictions using a 

Er
ro

r 
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committee of the models. The prediction of a committee of models is 

the mean prediction of its members, and the uncertainty is: 

                                            (2.15)  

where L is the number of networks in the committee and the exponent l 

refers to the model used to give the corresponding prediction yl. During 

training, it is usual to compare the performances of increasingly large 

committees on the testing set of data. Usually, the error is minimised by 

using more than one model in the committee. The selected models are 

then retrained on the entire database. Modelling uncertainties are often 

given for ± 1! and are presented as error bars. 

 

 

 

 

 

 

 

Figure 2.14: Schematic illustration of the uncertainty in defining a 

fitting function in regions where data are sparse (B) or where there is 

scatter (A). The thinner lines represent error bounds due to 

uncertainties in determining the weights [54]. 

2.8.5 Significance 

O
ut

pu
t 

Inputs 
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A neural network based on a Bayesian framework can estimate the 

significance of individual input parameters influencing the outputs. A 

high value of significance implies that the input parameter concerned 

explains a relatively large amount of the variation in output and it is not 

an indication of the sensitivity. 

From the software, there is a function of the values of the 

regularisation constants for the weights associated with an input, !w is a 

weight variance:  

                                                                               (2.16) 

where ! is a control parameter which determines the complexity of the 

model. The weights of an input with a large value of  ! tend to zero, so 

such an input is not significant in the regression [49, 51].  This measure is 

similar to a partial correlation coefficient in that it represents the amount 

of variation in the output that can be attributed by any particular input.  

To determine the sensitivity of the model to an individual input 

parameters, requires predictions must be made varying one parameter 

only whilst keeping all the others constant.  

The “testing” of various physical models – input parameters based 

on those models can be included in the training data, and those 

parameters which are not useful in explaining the output will have much 

lower significance than those which are useful, figure 2.15. 
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Figure 2.15: Example of a selected set of significance !w values from a 

committee. In this case the committee has 9 members.  

2.8.6 Procedure to create an optimised model from neural network 

To build a model with a neural network structure as described 

above, it is necessary to note a few points that should be followed to 

obtain a good model. 

1- A data set should be collected first, with the principle that the input 

variables have relevant influence on the output. Anything missing in the 

input variables means that there is additional noise in the model. 

2- An over ambitions set of many lead to an incompatibly small data set 

since not all publications report the full set of variables.  

3- There are two useful terminologies that should be known; one is called 

noise and the other uncertainty. Noise means vibrating in the results when 

the experiment is repeated number of times because of uncontrolled 

parameters [56, 57]. The second terminology is representing the extent to 

which the same data may reasonably be represented by a variety of 

different mathematical formulations without exorbitantly compromising 

the fit in the region where experiments exist [56, 57]. Large modelling 
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uncertainty occurs when a wide range of different functions behaviour 

away from the data vary markedly.   

4- Some functions can be included with the input variables as additional 

inputs, for example log (time) is used by some researchers [55]. The 

function should have meaning to the output if it is not effectively ignored 

by the network through association with near- zero weights.     

The model needs to be assessed after getting the final committee. 

Comparison between the error standard deviation (root mean square 

residual, RMS) and the average size of the error bar gives a good 

indication of the performance of the model.  

The root mean square residual Rtest and the average size of error 

bars Ebar were calculated as follows [55]: 

 

                                                  (2.17)   

                                                                 (2.18)         

where N represents the total number of predictions, Ti and Oi the 

experimental and calculated values respectively and Ei the error 

accompanying each prediction. The residual Rtest, by quantifying the gap 

between the prediction and the actual value, is a good tool to evaluate the 

accuracy of the model for known data.  
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3.1     Introduction 

 This chapter introduces details of the experimental procedures that 

are followed in this study. The performed experiments are used to 

validate the mathematical models described in the latter chapters. Figure 

(3.1) is the general flow chart of the experimental procedures. 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Experimental Procedure 
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Two types of experiments 

Experiments to validate the 
model of plane strain 
fracture toughness 

Experiments to validate the 
model of hardness  

Material: 

High carbon low alloy steel 

 

Material: 

Medium & high carbon alloy steels 

 

Heat treatments: 

Using furnaces 

 

Heat treatments: 

Using a Thermec- simulator  

 

Optical 
microscopy 

Vickers 
Hardness tests  

Plane strain 
fracture 
toughness tests 

Vickers 
Hardness 
tests  

Tensile 
tests 

X-ray 
diffraction  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow chart illustrating the experimental procedures. 
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3.2 Experiments to validate the hardness model 

3.2.1 Material 

A variety of alloys are used in the experiments as shown in table 

3.1. These steels are used in the experiments to validate the model for 

hardness, and to estimate the volume fractions of bainitic ferrite. Solid 

cylindrical specimens with dimensions of 3 mm diameter and 8 mm 

length are prepared for the heat treatment experiments. All of the alloys 

contain manganese, chromium and molybdenum with different 

concentration to achieve hardenability. 

Table 3.1: Chemical composition (wt %) of steels.  

Alloy C Si Mn Ni Cr Mo Cu Al S 

EE22 0.5436 0.0656 1.361 0.185 1.3176 0.0853 0.2143 0.0153 0 

EE23 0.731 0.072 1.398 0.184 1.282 0.085 0.212 0.0127 0.021 

EE24 0.519 0.221 0.746 0.614 0.553 0.164 0.291 0 0.0193 

EE25 0.711 0. 222 0.743 0. 614 0.535 0.15 0.292 0.0126 0.02 

 

3.2.2 Dilatometry Heat Treatments  

The thermo-mechanical simulator “Thermecmastor Z” is used to 

perform heat treatments at different thermal cycles on small samples 

under accurate computer control. This simulator is manufactured by Fuji 

Electronic Industrial Co. Ltd. The temperature and diametrical dilatation 

of the specimen are measured and thus the progress of phase 

transformations within the material can be followed. 

 The sample inside the chamber of the “Thermecmastor Z” 

simulator is shown in figure. 3.2.  Both of the upper and lower dies can be 
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raised using a hydraulic ram to hold the sample in its position. A platinum 

thermocouple is spot-welded to the specimen in a central position with 

the wires 1 mm apart. 

 The diametrical dilation of the sample is measured by a monitor 

using a laser beam, which moves and scans with the ram to ensure that 

the same location on the sample is measured throughout the experiment. 

The sample should be kept in the right location to ensure that the 

temperature and dilation measurements are for the same location. A 

closed chamber is under a vacuum of 10-2 Pa to prevent oxidation of the 

specimen. Helium was used in all the experiments as the cooling medium. 

Time, temperature and dilation are recorded and can be stored on a 

computer for analysis.   

   

 

 

Figure 3.2: The sample inside the chamber within the thermecmastor 

Z thermomechanical simulator. (a) Drawing of the arrangement 

inside the chamber. (b) Photograph of the actual chamber [58].  
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3.2.2.1 Isothermal hardening experiments 

 Each of the dilatomertric samples is austenitised at 930°C for 30 

min, followed by quenching to the isothermal temperature. The 

isothermal transformation temperatures used for each alloy are shown in 

table 3.2. Samples are kept at the constant temperature for different times 

according to the transformation kinetics. After isothermal heat treatment, 

they are cooled at a rate of 10 °C s-1.  

 

Table 3.2: The values of the isothermal transformation temperatures. 

Alloy Isothermal transformation temperatures (°C) 

EE22 160, 260, 280, 300, 330 

EE23 160 

EE24 160, 280, 300, 350, 400 

EE25 160, 250, 300, 320 

 

  3.2.2.2 Quenching experiments 

Each sample is austenitised at 930 °C for 30 min, followed by 

cooling at a constant rate of 10 °C s-1 to room temperature. The heating 

and austenitisation treatments are carried out in a vacuum chamber, and 

the cooling is achieved using helium gas. 

 

3.2.3 Hardness measurements 
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 A Vickers hardness testing machine with 30 kg load is used to 

measure the macro-hardness of the steel samples after heat treatments. 

The load is applied for 15 seconds during testing. Five readings are taken 

over metallographic specimen area. The average of the readings is used to 

represent hardness. 

3.2.4 Optical microscopy 

Metallograpic analysis is carried out for the samples after heat 

treatment. A slice of 4 mm thickness is cut from each specimen and 

mounted in Bakelite.  The surface is ground on four SiC papers  ranging 

between 600-1200 grit and polished in two successive stages with 6 µm 

and   1 µm diamond paste. The samples were then cleaned and etched 

using 2% nital (2% concentrated nitric acid in methanol solution). 

3.3 Experiments to validate the plane strain fracture toughness model 

3.3.1 Material 

A high carbon low alloy steel PP1 is used in the tests to validate 

the model of plane strain fracture toughness. The chemical composition 

of this alloy is shown in Table 3.3 [59]. The material is made in the form 

of 50 kg ingot by vacuum induction melting  [59]. 

 

 

 

 

Table 3.3: Chemical composition of alloy PP1 wt %. 
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C Si Mn P S Cr Ni V 

0.97 1.43 1.59 0.0018 0.0012 0.26 0.04 0.09 

 

3.3.2 Furnace heat treatments 

 The as received material is austenitised at 1000°C for one hour in a 

salt bath and then isothermally transformed at of 200°C using a salt pot 

for 9 days. The samples are then oil quenched to room temperature. All 

the samples were as blanks, and the final notch was machined after the 

heat treatment. Some of the samples were tempered at different 

temperatures and different times as listed in table 3.4. 

Table 3.4: The values of tempering temperature and tempering time 

on the alloy PP1. 

Tempering Temperature °C Tempering time 

300 6 hours and 1 month 

400 
(50,100,150,200,250,300) minutes 

and (2, 6  and 8) hours 

450 6 hours 

500 6 hours 

600 6 hours 

 

 

3.3.3 X-ray diffraction analysis 
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X-ray diffraction was used to determine the volume fraction of 

retained austenite V!, using a Cu K! radiation at 40 kV and 40 mA. X-ray 

scanning was done for an 2"=30-150°. The profile was analyzed for ! and 

! phases. The volume fraction was determined using the Rietveld analysis 

[60, 61], where the whole diffraction pattern is fitted at once was also 

applied to the data using Philips Highscore-plus software. 

3.3.4 Plane strain fracture toughness tests 

The fracture toughness test was conducted according to ASTM  E 

399-90 standard [43, 62] in order to obtain the plane strain fracture 

toughness KIc of the material. Compact tension specimens of the shape 

and dimensions shown in figure 3.3 were machined from the blanks. One 

sample was used for each tempering temperature, and the test was 

conducted in laboratory air at ambient temperature. 

 

 

 

 

 

 

 

 

Figure 3.3: The dimensions of the compact tension samples. 
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The samples were tested on two different machines, the first 

machine was Mayes 100 kN Servo Hydraulic Machine, shown in figure 

3.4, to fatigue pre-crack the sample using a sine wave loading with a 

frequency of (50 Hz). A step-down loading method was used during 

fatigue pre-cracking. After the pre-crack has reached the required length, 

the sample was removed and prepared for the fracture toughness test. 

   The second machine was an LCF tester with a maximum load 

capacity of (100 kN), figure 3.5. The sample carve was loaded with a 

very slow loading rate of  1 mm/min. The load-displacement was digitally 

recorded by a computer and the Bluehill®2 Software was used for data 

output. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Mayes 100 kN servo hydraulic axial fatigue testing 

machine [63]. 
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Figure 3.5: LCF testing machine with a maximum load of 100 kN 

plane strain fracture toughness test [64]. 

 

3.3.5 Tensile tests 

Enough material was not available to make specimens according to 

the ASTM standard. The specimens were machined to the shape and 

dimensions shown in figur 3.6. The samples were tested on a Hounsfield 

Low Load Electric Screw machine with maximum load of 5 kN as shown 

in figure 3.7. 
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Figure 3.6: (a) Shape and dimensions of tensile specimen. (b) 

Photograph of the specimens used for tensile test. 

 

 

 

 

 

 

 

 

Figure 3.7: Hounsfield Low Load Electric Screw Machine, maximum 

load 5 kN [65]. 
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4.1 Introduction 

 Materials science and metallurgy have been developed over the 

years but there are phenomena which are too complex to fully understand 

because of their multivariate nature. The hardness of steels is affected by 

many variables and this is the reason why a general method for the 

prediction of final hardness is lacking. The hardness of steels depends on 

the microstructure which is determined by the chemical composition and 

heat treatment. There are no formal models that satisfactorily capture the 

relations between these variables. The neural network technique 

described in chapter two is of great use in this context. 

 Hardness is the simplest way of determining the resistance of metal 

to plastic deformation; it is easily measured and widely reported. 

Hardness is used as a quality control parameter to ensure that the process 

and materials used behave in a reproducible manner [4, 58]. 

Artificial neural networks have been used for the prediction of 

Vickers hardness for austempered ductile cast iron (ADI) using a 

Bayesian framework [4]. Another prediction system for a forging steel 

has been developed by adopting finite element method (FEM) with a 

neural network for modelling the hardness distribution in steel after 

forging and cooling  [66].  

Chapter 4 

Hardness Model 
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In this work, neural networks are used to model the Vickers 

hardness as a function of chemical composition, transformation 

temperature, including isothermal transformation or isothermal 

transformation and direct quenching, for a wide range of steels. The 

design of the model is described, and to test its validity, predictions are 

compared with experimental values and expectations.  

4.2 Vickers Hardness   

The indentation test is used to measure the hardness in steels, both 

yielding and work hardening characteristics are important in determining 

the hardness.  Yielding and work hardening properties are dependent on 

the chemical composition and heat treatment.  

The production process can be optimised, by controlling the 

microstructure, which is correlated to hardness. For example the hardness 

of super-bainite is greater than ordinary bainite with the same carbon 

concentration. For mixed microstructures, the hardness depends on the 

transformation temperature and composition [35]. As the transformation 

temperature changes, the microstructures also change. Depending on the 

amounts of bainite and carbon-rich austenite.   

4.3 Hardness database 

Most steels in commercial use are heat treated either by low or 

high cooling rate from the austenitizing temperature or by quenching to 

martensite, and subsequently tempering to obtain optimum properties. In 

contrast, isothermal heat treatments in the bainite transformation range 

have not found wide applications, partly due to the uncertainties 

associated with optimizing mechanical properties by such treatments, but 

also because of the difficulties involved in controlling the microstructures 

involved [42]. Therefore in this work, three separate committee models 
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were produced to enable comparisons between the different databases, it 

discuss below. 

It is likely that a better model will result when the data are 

uniformly distributed but such data are difficult to extract from the 

publish literature.  

The hardness is a function of chemical composition and heat 

treatment. Therefore, in this investigation, the choice of the inputs is as 

follows: 

                                                    (4.1)             

where Ci represent the chemical composition (carbon, manganese, silicon, 

chromium, nickel and molybdenum). Phosphorus and sulphur are 

excluded because they are present in very small concentrations and hence 

unlikely to influence hardness. Furthermore, they did not show large 

variation with dataset. Tt transformation temperature °C, Vb volume 

percent of bainite, was used instead of the time needs for the 

transformation, Ta austenitisation temperature °C, Ttemp tempering 

temperature°C and ttemp tempering time. Tempering temperature and time 

have been used only to build the third data set committee. The lower and 

upper critical temperatures, Ac1 and Ac3 respectively and martensite start 

temperature Ms were not included in the input variables, because these are 

related to chemical composition [10, 67-69], and when they were 

removed, there was no significant difference in the output.  

The data set is made of experimental data collected from a 

published atlas of isothermal transformation diagrams [70]. Data 

concerning super-bainite were also included [21, 30, 31, 34]. 
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Three sets of data are used for modelling in this work, as described 

in tables 4.1 to 4.3, which give the maximum, minimum, average and 

standard deviation for each input parameter. Figure 4.1 presents the 

distribution in parameters in the second data set committee in model 

hardness_2. Some parameters are homogeneously distributed, such as 

carbon and volume fraction of bainite, while others, such as silicon and 

molybdenum, are clustered as shown in figure 4.1. This is recognised by 

Bayesian framework [49], which associates large modelling uncertainties 

with regions where the data are sparse or noisy. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: The variables in the first data set consist of 458 

experiments. The transformation temperature is the isothermal 

transformation temperature only. 
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Parameter Minimum 
Maximu

m 
Average 

Standard 

Deviation 

C / wt% 0.11 1.08 0.56 0.33 

Si / wt% 0.09 1.59 0.32 0.33 

Mn / wt% 0.30 1.98 0.74 0.42 

Ni / wt% 0.00 4.33 2.01 1.46 

Cr / wt% 0.10 1.65 0.89 0.13 

Mo / wt% 0.01 0.74 0.16 0.13 

Transformation 

temperature / °C 
125 760 489.17 145.5 

Volume percent of 

bainite  
0 100 74.50 36.3 

Austenitisation 

temperature / °C 
770 1020 412.8 165.3 

Hardness / HV 158 826 412.8 165.3 

 

 

 

Table 4.2: The variables in the second data set consist of 511 

experiments. The transformation temperature includes the 

isothermal transformation temperature and direct quenched 

temperature. 
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Parameter Minimum Maximum Average 
Standard 

Deviation 

C / wt% 0.11 1.08 0.56 0.33 

Si / wt% 0.09 1.59 0.31 0.32 

Mn / wt% 0.30 1.9 0.73 0.41 

Ni / wt% 0.00 4.33 1.94 1.44 

Cr / wt% 0.10 1.65 0.87 0.40 

Mo / wt% 0.01 0.74 0.16 0.13 

Transformation 

temperature / °C 
30 760 461.5 180.2 

Volume percent of 

bainite  
0 100 70.4 39.4 

Austenitisation 

temperature / °C 
455 1020 852.7 71.2 

Hardness / HV 158 940 415.1 166.8 

 

 

 

Table 4.3: The variables in the third data set consist of 613 

experiments. The transformation temperature includes the 

isothermal transformation temperature and direct quenched 

temperature, with other two input parameters tempering 

temperature and time. 
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Parameter Minimum Maximum Average 
Standard 

Deviation 

C / wt% 0.11 1.08 0.49   0.34 

Si / wt% 0.09 1.59 0.30   0.30 

Mn / wt% 0.30 1.9 0.63  0.39 

Ni / wt% 0.00 4.33 2.01  1.46 

Cr / wt% 0.10 10.6    1.77    2.72 

Mo / wt% 0.01 1.05 0.25  0.27 

Transformation temperature   

/ °C 
30 760 389.00   230 

Volume percent of bainite  0 100 58.57    44.55 

Austenitisation temperature       

/ °C 
455 1020 877.47    85 

Tempering temperature / °C 30 750 129.11   223 

Tempering  time / h 0.50    579      15.77    72 

Hardness / HV 158 940 399.01   148.10 
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Figure 4.1: The distribution of inputs against hardness in the second 

dataset. 
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4.4 Model training 

The data were randomized as described in chapter two and then 

divided equally into two, the test and training sets respectively. The 

training set is used to create a large number of neural networks models. 

The test data set is used to see how the trained models behave on unseen 

data. One hundred sub-models are trained using the training dataset. Each 

model has different number of hidden units and random seeds used to 

initiate the values of the weights. Figure 4.2 gives the training and test 

results of 98 models for committee model hardness_2. The perceived 

level of noise !v decreases as the number of hidden units increases, which 

means that a more complex function will be achieved and the model has 

lower !v, figure 4.2a. The log predictive error (LPE) reaches a maximum 

at five hidden units, figure 4.2c. The number of hidden units is set by 

examining the performance of the model on unseen test data, and the test 

error reaches a minimum at three hidden units, figure 4.2b. The neural 

network program ranks the models according to the test error in order to 

find the optimum committee model. One containing two of the best 

models is found to be the optimum with the smallest over all test error, as 

shown in figure 4.2d. The selected committee then is retrained on the 

entire data set without changing the complexity of its member models. 

Figure 4.3 shows a plot of measured versus predicted output using the 

committee model hardness_2 on the whole dataset. There are a few points 

that lie outside the 45° line and small error bars which represent the 

combined effect of modelling uncertainty and the perceived level of 

noise. 
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                                    (a)                                                       (b) 

 

 

 

 

                                   

                                   (c)                                                          (d) 

 

 

 

 

 

Figure 4.2: The training and testing results of the committee model 

hardness_2. (a) Perceived level of noise against hidden units (b) Test 

error against hidden units (c) Log predictive error against hidden 

units (d) Test error against number of models in the committee. 
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Figure 4.3: Predicted hardness against measured hardness of the 

committee model hardness_2. 

All the committee models from one to three are trained and tested 

in the same manner, and their training and test results are shown in table 

4.4. This table shows the (LPE), test error, number of hidden units and 

test error of the best model of each committee. The hardness_3 model 

shows relatively high test error.  
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Table 4.4: Training and test results of the committee models.  

Hardness 

model name 
Data LPE 

Test 

error 

Number 

of hidden 

units 

Number 

of  models 

in 

committee 

Test error 

in 

committee 

Hardness_1 

The first 

data 458 

experiments 

305 0.53 3 8 0.47 

Hardness_2 

The second 

data 510 

experiments 

250 2.4 5 2 0.87 

Hardness_3 

The third 

data 613 

experiments 

165 3.2 2 2 2 

 

Figure 4.4 indicates the significances, !w, of the input variables, as 

perceived by the committee model hardness_2. The significance indicates 

the level of contribution to the output, rather like a partial correlation 

coefficient in linear regression analysis. Transformation temperatures, 

carbon content, volume fraction of bainite and silicon have relatively 

large contributions to hardness. 
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Figure 4.4: Significance of each variable of committee model 

hardness_2.Transformation temperature °C, Vb and Si give the 

largest contributions to hardness, in descending order. 

4.5 Application of model 

The optimised committee consisting of two sub-models, 

hardness_2, is used to study the effects of individual variables to check 

whether the results are compatible with known metallurgical principles 

and other published trends not incorporated in the models. Predictions 

were made  for the steel with the composition  (0.98C- 1.46Si- 1.89Mn-

1.26Cr- 0.26Mo wt%)  [21, 71], by varying a particular input while the 

others are fixed. The isothermal transformation temperature is set at 

200°C; the bainite volume percent is sixty nine with austenitisation at 

1000°C. 
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4.5.1 Effect of alloying elements on hardness 

The influence of alloying elements was studied with a particular 

emphasis on the carbon content and silicon.  All error bars represent the 

combined effect of the uncertainty and noise in the committee model. C, 

Si, Mn, Ni, Cr, and Mo contribute to the outputs as shown in figure. 4.5 

to 4.10.  Figure 4.5 shows that the hardness increases as the carbon 

concentration of steels varies from 0.1 to 0.6 wt% and then decreases as 

the carbon content increases. The reduction at large carbon concentration 

is expected due to the greater retention of relatively soft austenite.  

To check the general trend of this effect of carbon concentration on 

hardness, the law of mixtures [42] has been used to predict the hardness:   

                                                       (4.1) 

where Vb, v! and v"' are the volume fractions of bainite, retained austenite 

and martensite respectively, Hb is the hardness of bainitic ferrite (480 

HV), H! the hardness of retained austenite (taken to be 240 HV even 

though it might change slightly with carbon content [42]) and H!' that of 

martensite, calculated as follows [42]: 

                                       (4.2) 

where Q the dependence of martensite hardness on carbon content, found 

to be 1020 HV/ wt% of carbon in solid solution [42], s is the amount of 

carbon trapped in the bainitic ferrite [42], either in solid solution (s=0.03 

wt%) or in the form of carbides (s=0.27 wt%), Ho the martensite hardness 

at a carbon content of =0.43 which is 795 HV [42]. A program mucg-

73  has been used to calculate Ms in order to estimate the volume fraction 

of retained austenite as a function of martensite-start temperature  [72]. 
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                                                   (4.3) 

where Tq represents the lowest temperature reached during quenching. 

Figure 4.6 shows the two predictions and both show similar trends.  

Figure 4.7 shows that the hardness decreases as silicon content 

increases with low error bars. The silicon makes the carbon constrict the 

precipitation of carbides during the bainite transformation [73]. It is 

interesting that transmission electron microscopy in the work by Zhang et 

al. [74] revealed that the bainite was free from carbides in spite of the fact 

that the silicon concentration of steel was less than 0.6 wt.%. Larger 

concentrations of silicon have been used in all of the steels developed to 

generate nanostructured bainite, in order to prevent the precipitation of 

cementite during the course of transformation. It may be possible to use 

lower concentrations and yet maintain a carbide-free phase mixture [75]. 
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Figure 4.5: Predictions of hardness in HV against carbon content in 

wt%, using the committee model hardness_2 and the inputs listed in 

table 4.2. 
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Figure 4.6: Hardness / HV as a function of carbon content wt% for 

both neural network and the law of mixtures calculations. 
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Figure 4.7: Predictions of hardness in HV against silicon content in 

wt%, using the committee model hardness_2 and the input listed in 

table 4.2. 

Figure 4.8 shows that for a fixed transformation temperature 

manganese slightly increases the hardness. This is because it retards 

transformation by increasing the hardenability. The fraction of martensite 

in the microstructure therefore increases causing a corresponding increase 

in hardness. There is of course, a small substitutional hardness effect as 

well. Figurs 4.9-4.11 show the effect of nickel, chromium and 
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molybdenum on hardness respectively. There appear to be only minor 

effects. That is in agreement with the significance of input variables that 

was shown in figure 4.4, i.e the model perceives low significance for Ni, 

Cr and Mo.  

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Predictions of hardness in HV against manganese content 

in wt%, using the committee model hardness_2 and the input listed 

in table 4.2. 
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Figure 4.9: Predictions of hardness in HV against nickel content in 

wt%, using the committee model hardness_2 and the input listed in 

table 4.2. 
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Figure 4.10: Predictions of hardness in HV against chromium 

content in wt%, using the committee model hardness_2 and the input 

listed in table 4.2. 
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Figure 4.11: Predictions of hardness in HV against molybdenum 

content in wt%, using the committee model hardness_2 and the input 

listed in table 4.2. 

 

 

 

4.5.1 Volume fraction of bainite and transformation temperature  

The effect of the bainite the volume fraction and the transformation 

temperature on hardness were studied. Figure 4.12 shows that the 

hardness decreases as the transformation temperature increases;  
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Figure 4.12: Predictions of hardness in HV against transformation 

temperature, using the committee model hardness_2 and the input 

listed in table 4.2. 

 

Figure 4.13 shows that the hardness decreases as the volume 

percent of bainite increases from 0 to 50 and then increases as the volume 

percent become larger. This is because the hardness first decrease as 

bainite replace martensite, but as the fraction of  fine-bainite increase so 

the hardness increase [21]. Than the increases mean for slip distance 

reduced as more fine-bainite forms. 
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Figure 4.13: Predictions of hardness in HV against volume fraction of 

bainite in wt%, using the committee model hardness_2 and the input 

listed in table 4.2. 

 

Figure 4.14 shows that the austenitisation temperature has almost 

no effect on hardness, the error bars are high between 700°C to   800°C, 

this is due to the fact that not enough input data were available in the 

range of these temperatures. 
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Figure 4.14: Predictions of hardness in HV against austenitisation 

temperature, using the committee model hardness_2 and the input 

listed in table 4.2. 

Figure 4.15 shows the combined effect of transformation 

temperature and bainite volume fraction on hardness for the same alloy2 

used previously for the prediction of the effect of alloying elements on 

hardness. They show the non-linear relationships that are not captured by 

linear regression methods [42]. Neural network models can capture more 

complex interactions. As can be seen in this figure, the highest hardness 

(700 HV-800 HV) is with high volume percent of bainite (90-100) and 

low transformation temperature (200-240 °C). This may be due to the 

development of an extremely fine and hard bainite at low isothermal 

transformation temperature [35]. This super-bainite phase is the hardest 

                                                      

2 (0.98C- 1.46Si- 1.89Mn-1.26Cr- 0.26Mo wt%)  
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ever been produced [75]. There are also two regions which have 

relatively high hardness (600 HV-700 HV), the first has low volume 

percent of bainite in the range (0-20) and the second has high volume 

percent of bainite in the range (70-100) and with relatively low 

transformation temperatures less than 285 °C. In the low bainite volume 

percent region, the rest of the microstructure because martensite which is 

also a hard phase. The relatively high hardness in the second region is 

again due to the development of a relatively fine and hard bainite at low 

isothermal transformation temperature. As the isothermal transformation 

temperature increases, the hardness drops.   

Figure 4.16 shows the combined effect of carbon content and 

transformation temperature on hardness in steels. The transformation 

temperature has the most significant effect on hardness; super-bainite 

forms at the low isothermal transformation temperatures and hence 

contributes to the highest hardness.   

Figure 4.17 shows the combined effect of transformation 

temperature and silicon concentration on hardness. The transformation 

temperature has the main effect on hardness that masks the effect of 

silicon. As the transformation temperature decreases from (600-200) °C, 

hardness increases from 200 HV-800 HV. This is mainly due to the 

refinement of the bainitic structure with decreasing transformation 

temperature. 

Figure 4.18 shows the combined effect of bainite volume fraction 

and carbon concentration on hardness. All the hardness values in this 

figure are higher than 500 HV which indicates that hard phases are 

present (martensite and ⁄or bainite). There are two regions which show the 

highest hardness (700-800) HV. The first region is at low bainite volume 
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fraction (Vb > 0.2) and at a range of carbon content of (0.33-0.91 wt%) 

which may be due to the formation of martensite. The second region is at 

a high bainite volume fraction (Vb > 0.8). There are also two regions 

where the hardness is the least (500-600) HV. The first is at low carbon 

content C > 0.15 wt% where the martensite and bainite becomes leaner in 

carbon and hence less hard. The second region is at high carbon content C 

< 0.88 wt% where the Ms temperature decreases and the isothermal 

transformation temperature of 200 °C, which is assumed constant in the 

construction of these contours, leads to coarser and less hard bainite. 

Figure 4.19 shows the combined effect of bainite volume fraction 

and silicon content on hardness. All the hardness values are above 500 

HV. The highest hardness (800-900) HV is at low bainite volume fraction 

and low silicon concentration of Si < 0.76 wt%. Here the volume fraction 

of martensite is the greatest. Content of Si greater than 1.28 wt% inhibit 

the precipitation of carbides during the transformation to bainite [73] and 

hence leads to the least hardness (500-600) HV. 
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    Hardness 

 

 

 

 

 

Figure 4.15: Contours for predicted Vickers hardness against 

transformation temperature and volume percent of bainite for 

committee model hardness_2. 

      Hardness 

 

 

 

 

 

Figure 4.16: Contours for predicted Vickers hardness against 

transformation temperature and carbon content for committee 

model hardness_2. 
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Figure 4.17: Contour for predicted Vickers hardness against 

transformation temperature and silicon content for committee model 

hardness_2. 

 

      Hardness 

 

 

 

 

Figure 4.18: Contour for predicted Vickers hardness against volume 

fraction of bainite and carbon content for committee model 

hardness_2. 
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Figure 4.19: Contour for predicted Vickers hardness against volume 

fraction of bainite and silicon content for committee model 

hardness_2. 

 

4.6 Comparisons between models  

Further data not used in creating the model were collected from 

published results [42, 71, 76-78] The data also included the steels which 

have been studied in this work (EE22, EE23, EE24, EE25 and PP1) and 

their chemical compositions are shown in table 3.1 and table 3.2. The 

chemical compositions for the unseen data are shown in table 4.5; some 

of these data are outside the range of the training data used in building the 

model. These were used to demonstrate the predictive abilities of neural 

network models and to verify their general applicability.  

Figures 4.20 to 4.22 show plots of the measured values versus 

predicted values for hardness of the alloys according to the three 

committee models (hardness_1, hardness_2 and hardness_3). The neural 
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network model trained on the first data set shows large uncertainties and 

rough predictions for these alloys as shown in figure 4.20. 

On the other hand, the neural network model trained on the second 

data set gave more acceptable results, figure 4.21. It confirms that the 

incorporation of direct quenching in the second data set can raise the 

predictive power of the model and reduce the uncertainties. In addition, 

the prediction results of the model which include isothermal and direct 

transformation temperature model (hardness_2) is more compatible with 

the experimental results than those of models that were trained on the 

data set with only isothermal transformation temperature (hardness_1), 

and the isothermal transformation temperature, direct quench and 

tempering data set (hardness_3), figure 4.22. 

Table 4.6 shows the perceived error of the models, and the root 

mean squared error, to compare the performances of these three models. 

The committee of model hardness_2 has the least difference between the 

perceived error and the root mean squared error among the three models. 

From this test we can confirm that committee model hardness_2 is the 

best one among these three models for a data concern data both within 

and out of the training range.  
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Table 4.5: Compositions for the steels used to test predictive 

capability. 

References 
C / 

Wt% 

Si  / 

Wt% 

Mn / 

Wt% 

Ni / 

Wt% 

Cr / 

Wt% 

Mo / 

Wt% 

[42, 76] 0.43 2.02 3 0.01 0.01 0 

[76] 0.22 2.03 3 0.01 0.01 0.01 

[76] 0.39 2.05 0 4.08 0 0 

[77] 0.32 1.45 1.97 0.02 1.26 0.26 

[77] 0.31 1.51 0.01 3.52 1.44 0.25 

[77] 0.3 1.51 0.01 3.53 1.42 0.25 

[71] 0.98 1.46 1.89 0 1.26 0.26 

[17] 1 1.5 1.9 0 1.3 0.25 

[78] 0.78 1.6 2.02 0 1.01 0.25 
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Table 4.4: The prediction ability of three committee models against 

the unseen data within and out of the range of training data.  

Model 
Root mean squared 

error 
Perceived error 

Hardness_1 95.1 58.88 

Hardness_2 53.5 29.76 

Hardness_3 129.5 24.56 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: predicted values against measured values for model 

(hardness_1). 
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Figure 4.21: Predicted values against measured values for model 

(hardness_2). 
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Figure 4.22: Predicted values against measured values for model 

(hardness_3). 

 

4.7 Conclusions 

 Three neural network models are presented with different data sets 

to predict the hardness for steel and to make comparisons between the 

performances of these models. It is found model hardness_2 has the least 

difference between the perceived error and the root mean squared error.    

The model hardness_2, which is based on direct quenching and 

isothermal transformation dataset, proved to be the most compatible with 

the experimental results. This is used to demonstrate some of the trends, 

by varying the contents of one variable and keeping the others constant.  
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The model has interpreted the behaviour of the alloying elements 

in considering with metallurgical theory and has been found to be 

reliable, i.e.  carbon has the highest effect on hardness against all other 

alloying elements; the transformation temperature and volume fraction of 

bainite are also form  to be segregate.   

With a neural network technique, interpretation of the combined 

effect of variables can also be carried out using contour plots. 

The best model in prediction hardness_2 is found applicable even 

for data outside the range used for training the models.  
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5.1 Introduction 

Bainite is formed during the decomposition of austenite by 

isothermal transformation in a temperature range where neither pearlite 

nor martensite form. The steels which have been studied have a 

microstructure containing in general a mixture of carbon free bainitic 

ferrite, austenite and some martensite. 

The large concentration of silicon typically present in bainitic 

steels is a key in the development of this fine microstructure. The silicon 

hinders the precipitation of cementite during the bainite transformation 

[73].  

One of the most common hardening heat treatments is isothermal 

transformation. The isothermal process to form bainite is defined in two 

stages, the first involved the formation of bainitic ferrite and the second 

the decomposition of carbon-enriched austenite into cementite [79]. 

Between the two stages, there is what is called “a processing window” 

where heat treatment can be conducted without danger of carbide 

precipitation, figure 5.1. The first stage starts without any bainite and at 

Chapter 5 

Bainite   

 



 

 

83 
 

the end of stage I, both bainite and retained austenite contents are 

maximised. In the second stage, further bainite does not form but 

continuous carbide precipitation leads to a reduction in the amount of 

austenite. The isothermal transformation temperature defines the 

maximum volume fraction of  bainite that can be observed [16].  

This chapter describes a neural network model to estimate the 

volume percent of bainite for a wide range of steels as a function of 

chemical composition, austenitisation temperature, isothermal 

transformation temperature and Vickers hardness. 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic representation of the development of 

microstructure during austempering, together with an illustration of 

the "processing window" [80].  
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5.2 Previous models 

 There are two previous artificial neural networks to estimate the 

volume percent of retained austenite. The model was intended to create a 

mechanism-based model capable of estimating the maximum volume 

percent in austempered ductile irons [81]. The intention of the second 

model was to estimate the amount of retained austenite in transformation-

induced plasticity  assisted steels [82, 83]. These two models have been 

published and were used to optimize the microstructure of these steels. 

No model was found which is based on neural network to estimate the 

volume percent of bainite. Some models dealt with the kinetics of the 

bainite transformation, such as the physical mechanism of transformation 

[84, 85].  

5.3 The Inputs and output 

 The model was built by analysing a data set which is based on 

experimental results published in an atlas of isothermal transformation 

diagrams [70]. The set of inputs in table 5.1 has approximately the same 

inputs as the model used to estimate Vickers hardness in the previous 

chapter except that the bainite volume percent is an output and the 

hardness an input. A total of 449 experimental data were collected from 

[70], including information about super-bainite [21, 31, 34, 86]. The 

martensite-start temperature was not removed from the input data as in 

chapter four, only Ae1 and Ae3 were removed from the input variables for 

the same reason as explained in chapter four. Some values of martensite-

start temperature were calculated from the program mucg-73 if they were 

missing from the publish set [87].   The data were only collected for the 

isothermal transformation process to form bainite; direct quenching or 

tempering data were excluded in this data set.  
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Table 5.1: The variables in the data set. 

Parameter Minimum Maximum Average 
Standard 

deviation 

C / wt% 0.11 1.08 0.58   0.34 

Si / wt% 0.09 1.57 0.29   0.27 

Mn / wt% 0.30 2 0.72  0.38 

Ni / wt% 0.00 4.33 2.03  1.45 

Cr / wt% 0.10 1.55    0.87 0.39  

Mo / wt% 0.01 1.05 0.25  0.27 

Transformation temperature / °C 190 750 485 142 

Ms / °C 53 455 257 115.3 

Austenitisation temperature / °C 770 1000 882 89.9 

Hardness / HV 30 kg 158 945 412 154 

Volume percent of bainite 0 100 77 35 
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Figure 5.1: The distribution of inputs against volume percent of 

bainite. 
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5.4 Model training  

The data were normalised between -0.5 and +0.5 and split into two 

sets, training set and testing set, as explained previously in chapter two. 

The maximum number of hidden units was twenty and the maximum 

number of seeds was five, the total number of models created during 

training was a hundred. Figure 5.2a shows the noise level decreases as the 

number of hidden units decrease.  Examining the performance of the 

model is come from testing unseen data (testing set). Figure 5.2b shows 

the test error tends to reach a minimum value when the hidden units was 

eight. The ranked models depend on the values of the test error and 

maximum value for LPE it was reach maximum value when the hidden 

units was ten figure 5.2c, committees are then formed depend on best few 

models figure 5.2d shows the combined test error reaches minimum value 

with thirty four models.  

The final committee is used to make predictions on the whole database in 

figure 5.3. There are number of outliers, i.e, points in the middle of the 

figure which are away from the line of perfect fit.  Figure 5.4 shows that 

the hardness correlates best with Vb, followed by the isothermal 

transformation temperature and martensite start temperature. For the 

alloying elements, silicon is found to be significant because it hinders the 

precipitation of cementite, the formation of cementite leads to a reduction 

of carbon concentration in the residual austenite, thereby permitting the 

growth of a further amount of ferrite [16]. 

 The influence of hardness and its effect on the amount of the volume 

percent of bainite in these types of steels is explored in detail later in the 

text. 
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                                             (a)                                                            (b) 

 

                                   

 

 

 

   

                                            (c)                                                             (d) 

 

 

 

 

 

Figure 5.2: The training and testing results of the committee model. 

(a) Perceived level of noise against hidden units. (b) Test error 

against hidden units (c) Log predictive error against hidden units. (d) 

Test error against number of models in the committee. 
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Figure 5.3: Predicted verses measured volume percent of bainite, the 

predictions being based on of the committee model. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Significance of each variable of committee model. 
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5.5 Application of model 

The committee is usually used to study the effects of individual 

variables on the output, but in this case it is impossible to study these 

effects on volume percent of bainite because one of these inputs, i.e. 

Vickers hardness, has correlation with all other parameters, specially with 

composition and heat treatments [42], as was explained in chapter two. 

Therefore, real values for hardness should be available for each case and 

then this work can make a prediction for these cases. For example, if it is 

intended to use the model to predict the volume fraction of bainite as the 

concentration of each of the alloying elements changes for the alloy of 

super-bainite which was used in chapter four and six with the 

composition 0.98C- 1.45Si- 1.89Mn-1.25Cr- 0.25Mo wt% [88], it should 

be taken into consideration that the hardness for this composition will 

change with any change in the concentration of the alloying elements. In 

physical terms, care must be taken of the metallurgical principles. 

 The simple metallurgy of steels concerned with super-bainite can be 

summarized as follows [89]: 

• Maximization of the fraction of bainite, involves transformation at 

lowest possible temperature.  

• Silicon can be added to suppress brittle cementite in high strength 

steels. 

• Both pearlite and allotriomorphic ferrite should be avoided during 

cooling [16].   

Consistent with the first stage reaction, Vb first increases, but then stops 

according to the concept of T0 curve with the beginning of stage II which 
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is connected with carbide precipitation and ferrite formation as shown in 

figure 5.1. 

5.5 Predictability 

The general performance of the model can be tested by predicting 

on unseen data. Table 5.2 shows the values of the unseen data within the 

range of the model [70]. Figure 5.5 shows the predictability of the volume 

percent of the bainite against the measured values. 

Predictions were also made for the alloys of the super-bainite. Table 5.3 

shows the input variables of these alloys which were unseen by the 

model. Figure 5.5 shows the predictability of the volume percent of 

bainite against measured values, these values fall on the forty five degrees 

fit line.  

Table 5.2: The unseen data used for testing the predictive ability of 

the model, the chemical composition in wt%. 

C 

/ wt% 

Si / 

wt% 

Mn / 

wt% 

Ni / 

wt% 

Cr / 

wt% 

Mo / 

wt% 

Isothermal temperature  

/ °C 

0.11 0.21 0.35 2.89 0.28 0.09 700 

0.11 0.21 0.35 2.89 0.28 0.09 550 

0.95 0.25 0.4 2.29 0.35 0.08 550 

0.15 0.18 0.53 1.55 0.25 0.25 500 

0.15 0.18 0.53 1.55 0.25 0.25 555 

0.99 0.29 0.55 1.51 0.32 0.29 355 

0.99 0.29 0.55 1.51 0.32 0.29 212 

0.7 0.15 0.35 3.24 0.95 0.05 525 

0.7 0.15 0.35 3.24 0.95 0.05 590 

1 0.12 0.3 3.27 0.9 0.07 510 

1 0.12 0.3 3.27 0.9 0.07 550 

1 0.12 0.3 3.27 0.9 0.07 440 

0.11 0.09 0.38 4.15 1.33 0.07 500 
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0.11 0.09 0.38 4.15 1.33 0.07 450 

0.54 0.25 0.34 3.92 1.28 0.07 550 

0.54 0.25 0.34 3.92 1.28 0.07 550 

1.02 0.27 0.47 4.15 1.22 0.05 250 

1.02 0.27 0.47 4.15 1.22 0.05 200 

0.15 0.2 0.38 4.33 1.15 0.17 700 

0.17 0.22 0.88 0.85 0.59 0.05 500 

0.17 0.22 0.88 0.85 0.59 0.05 450 

0.92 0.3 0.93 0.9 0.57 0.03 581 

0.92 0.3 0.93 0.9 0.57 0.03 550 

0.2 0.15 0.71 1.13 0.8 0.05 500 

0.2 0.15 0.71 1.13 0.8 0.05 450 

0.95 0.25 0.74 1.19 0.84 0.09 700 

0.95 0.25 0.74 1.19 0.84 0.09 580 

0.18 0.25 0.93 1.34 1.11 0.11 500 

0.18 0.25 0.93 1.34 1.11 0.11 450 

1 0.28 0.99 1.42 1.12 0.11 530 

1 0.28 0.99 1.42 1.12 0.11 580 

0.33 0.21 0.52 0.89 0.1 0.05 530 

0.33 0.21 0.52 0.89 0.1 0.05 420 

0.19 0.14 1.37 0.55 0.2 0.31 580 

0.19 0.14 1.37 0.55 0.2 0.31 550 

0.31 0.2 0.52 2.53 0.54 0.58 400 

0.8 1.5 2 0 1 0 250 

0.78 1.45 1.95 0 0.97 0 200 

0.83 1.57 1.98 0 1.02 0.24 300 

0.83 1.57 1.98 0 1.02 0.24 250 

0.78 1.45 1.95 0 0.97 0 300 
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Table 5.2(continued): The unseen data used for testing the predictive 

ability of the model, the chemical composition in wt%. 

Austenitisation 

temperature / 

°C 

Ms 

/ °C 

Hardness 

/ HV 

Predicted 

Volume 

percent 

Error 

bars 

Measured 

Volume 

percent 

855 450 280 35.3 5.778 40 

855 450 198 82.4 4.542 85 

855 120 810 18.5 15.1 0 

855 455 174 99.4 2.403 100 

855 455 230 92.9 4.038 90 

770 159 474 100 2.992 100 

770 159 752 91.5 9.971 100 

850 189 252 97.5 3.039 100 

850 189 309 94.25 2.552 100 

850 100 282 99 3.325 100 

850 100 354 95.8 3.509 100 

850 100 454 88 7.371 80 

770 400 372 25.8 4.887 35 

770 400 332 52 5.219 52 

855 219 593 12.9 4.259 20 

855 219 312 92 3.444 100 

770 121 570 89.4 3.959 100 

770 121 720 45.4 7.192 25 

855 352 490 7.8 7.513 3 

830 421 235 99 2.345 100 

830 421 274 101 3.19 100 

870 150 250 99.8 2.573 100 

870 150 284 99.4 2.031 100 

800 410 285 94.2 3.852 100 

800 410 321 98.47 3.079 100 

855 120 595 15.2 4.484 20 

855 120 242 99.7 3.383 99 

800 400 393 59.78 5.5 50 

800 400 310 98 2.75 98 

880 120 325 99 2.381 100 
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880 120 375 98.3 2.828 100 

1000 357 302 95.75 3.743 100 

1000 357 445 91.48 5.805 100 

1000 420 289 50 5.707 45 

1000 420 159 97.5 2.501 100 

1000 357 355 92 3.751 90 

900 53 589 78.97 7.955 79 

1000 155 550 80.78 4.498 83 

1000 120 500 74 10.42 75 

1000 120 540 75 4.933 75 

1000 155 490 73 11.04 55 

 

 

 

 

 

 

 

 

 

Figure 5.5: Predicted volume percent of bainite against measured 

volume percent of bainite of the committee model for unseen data. 
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Table 5.3: The unseen data used for testing the predictive ability of 

the model concerning super-bainite.  

C / 

wt% 

Si / 

wt% 

Mn / 

Wt% 

Ni / 

wt% 

Cr / 

wt% 

Mo / 

wt% 

Isothermal 

temperature  

/ °C 

0.97 1.43 1.59 0.04 0.25 0 200 

0.98 1.45 1.89 0 1.25 0 200 

0.98 1.45 1.89 0 1.25 0 190 

0.98 1.45 1.89 0 1.25 0 250 

0.98 1.45 1.89 0 1.25 0 300 

0.8 1.59 2 0 1 0 200 

0.8 1.59 2 0 1 0 250 

0.8 1.59 2 0 1 0 300 

0.78 1.49 1.95 0 0.79 0.24 200 

0.78 1.49 1.95 0 0.79 0.24 250 

0.78 1.49 1.95 0 0.79 0.24 300 

0.97 1.43 1.59 0.04 0.25 0 200 

0.79 1.55 1.98 0 1.01 0.24 200 

0.79 1.55 1.98 0 1.01 0.24 250 

0.79 1.55 1.98 0 1.01 0.24 300 
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Table 5.3 (continued): The unseen data used for testing the predictive 

ability of the model concerning super-bainite.  

Ms / °C 

Austenitisation 

temperature / 

°C 

Hardness 

/ HV 

Predicted 

Volume 

percent 

Error 

bars 

Measured 

Volume 

percent 

120 1000 720 87.73 17.19 80 

120 1000 519 80.12 7.74 59 

120 1000 550 80.34 5.23 87 

120 1000 575 75.01 9.47 84 

120 1000 440 55.1 17.55 55 

80 900 550 82.89 5.07 83 

80 900 589 78.59 7.92 79 

80 900 500 72.5 12.22 53 

155 1000 550 82.15 5.77 87 

155 1000 555 79.58 7.55 79 

155 1000 500 75.14 9.87 74 

110 1000 545 87.49 19.31 80 

132 920 540 83.8 5.84 58 

132 920 530 77.35 5.85 72 

132 920 500 75.25 9.33 50 

 

Table 5.5 shows the perceived error of the models and the root 

mean squared error, to compare the performances of the model. The 

committee of the model has good predictability; the perceived error and 

the root mean squared error have a small difference between them for 

seen and unseen data.  
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Table 5.5: The performance of the model in terms of the root mean 

squared error and perceived error. 

Type of data 
Root mean 

squared error 
Perceived error 

Seen data 5.9 4.3 

Unseen data 7.1 5.2 

Unseen data for super-bainite 5.1 9.9 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Predicted volume percent of super-bainite against 

measured volume percent of bainite for the committee model for 

unseen data. 
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5.7 Conclusions 

A neural network has been used to estimate the volume percent of 

bainite as a function of chemical composition, heat treatment and 

hardness. It has successfully made predictions for a wide range of steels. 

This model can be used to predict the fraction of bainite for super-bainite 

steels by knowing the input variables. New experiments can then be 

considered. Hardness has shown high significance in the model, because 

it is directly correlated to the time needed to form bainite.    
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6.1 Introduction 

The Bayesian neural network method used here was previously 

described in chapter two. It has been successfully applied in complicated 

materials problems which include the modelling and optimisation of 

Charpy impact energy and strength of steel weld metals [11], the yield 

and ultimate tensile strength of nickel-base superalloys, the behaviour at 

high-temperature of creep resistant steels, and properties of polymeric 

and inorganic compounds and ceramics. A review of these applications is 

given in [50]. In addition, this modelling method has been also applied to 

plane strain fracture toughness for specific types of steels [90-92]. 

Diverse models exist for predicting plane strain fracture toughness. 

These include microstructural parameters with general functions [6, 7]. 

As the microstructural parameters vary according to material and plane 

strain conditions, this approach is only weakly predictive. 

Simple dispersed barrier models do not predict plane strain fracture 

toughness and more complex versions have fitting parameters which 

cannot be generalised [93]. As it stands, there are no previous models 

Chapter 6 

Plane strain fracture toughness  

 



 

 

100 
 

which flexibly estimate a range of observed behaviour and are 

quantitative. Bayesian network models are both flexible and quantitative, 

and also provide a measure of modelling uncertainty, allowing 

calculations from far outside the knowledge base to be identified and 

approached with caution [94, 95]. 

 The aim of this chapter is to predict the plane strain fracture 

toughness; the data have been collected from published literature. 

Different types of steels and austempered ductile irons have been 

included in these data to create the model.            

6.2 Plane strain fracture toughness database 

Many attempts were made to build the best model capable of 

estimating the value of KIc correctly. Three general models have been 

created which depend on the choice of input variables. These models are: 

1- Mechanical properties model. 

2- Chemical composition model. 

3- Chemical composition, heat treatment and mechanical properties 

model.  

Since the KIc is a function of many variables, the choice of the 

inputs for the third model is as follows: 

                                                    (6.1)             

where Ci is the chemical composition (carbon, manganese, silicon, 

chromium, nickel and molybdenum), Ta  the austenitisation temperature 

°C, Tt1 the transformation temperature °C,  tt1 the hold time at temperature 

in minutes , Tt2 the second step  temperature °C, tt2  the hold time for the 
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second step temperature in minutes and Mp mechanical properties (yield, 

ultimate, elongation and hardness). 

 

6.2.1 Input variables for mechanical properties model. 

A data set was built up by collecting, a total of 269 data from 

published literatures (Appendix A). The input variables included yield 

stress, ultimate tensile stress and elongation for a wide range of steels as 

well as super-bainitic steels [89]. Table 6.1 shows the maximum, 

minimum and standard deviation of the database and figure 6.1 shows a 

graphical representation of the database.   

The data set did not include any artificial input parameters which 

are functions of the inputs.  

 Table 6.1: Data used to build the mechanical properties model. 

Variables Minimum Maximum Average St. Dev 

Yield stress / MPa 260 2678 1151 430 

UTS / MPa 390 2722 1421 470 

Elongation  / % 0.06 74.7 10 8 

KIc / MPa m0.5 11.39 295 71 37 

 

 

6.2.2 Input variables for chemical composition model 

The input to this model is only the chemical composition in wt%.  

A total of 1017 experimental data were collected from the published 

literature (Appendix A) for nine variables. The minimum and maximum 
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values for each variable are listed in table 6.2, and figure 6.2 shows the 

distribution of inputs against the target.  

 

 

                                               (a)                                                           (b) 

 

 

 

 

 

 

 

 

                                                                               (c) 

 

                                                                               

 

 

 

Figure 6.1: Distribution of inputs against KIc for the mechanical 

properties model. 

Table 6.2: Data used in the chemical composition model. 

Variables Minimum Maximum Average St. Dev 

C / wt% 0.0020 3.8    1.03 1.18 

Si / wt% 0.0      3.2    0.92     0.97 
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Mn /wt% 0.0 13.2 0.62 0.57 

P / wt% 0.0 0.48 0.0154 0.02 

S / wt% 0.0 0.46 0.02 0.06 

Mg  / wt.% 0.0     2 0.03 0.16 

Cu / wt% 0.0 1.6 0.109 0.23 

Cr / wt% 0.0 18.9 1.47 2.67 

Ni / wt% 0.0 70 1.64 3.52 

KIc / MPa m0.5 5.5 445 63.26 42.94 
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Figure 6.2: Distribution of inputs against KIc for the chemical 

composition model. 
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6.2.3 Input variables for chemical composition, heat treatment and 

mechanical properties model 

There are data which are currently available and reported for the 

fracture toughness of different types of steel. This new data set has more 

inputs than the other datasets which were explained in the previous 

sections.  A data set consisting of 394 experiments was compiled 

(Appendix A) including seventeen variables. The decision was made to 

exclude the dimensions of the test sample, the orientation of the notch 

and the loading direction of the sample. This may add noise to the 

calculation of toughness but including these variables would limit the size 

of the dataset. When the austenitizing temperature was missing in the 

data, it was estimated from other data with approximately similar carbon 

content or from the Ae3 temperature for that steel. When either the 

hardness or yield strength was a missing, it was estimated from the 

relationship !y=h/3. When the UTS was missing in the data, it was 

estimated by adding 300 MPa to the yield stress value. Hardness values in 

Rockwell and Brinell were converted to Vickers hardness before being 

fed to the data [8]. The minimum and maximum values for each variable 

are presented in table 6.3, and figure 6.8 shows the distribution of input 

against the output. 

All the data which were collected from literature represents tests carried 

out at room temperature. 
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Table 6.3: Data used in the chemical composition, heat treatment and 

mechanical properties model. 

Variables Minimum Maximum Average St. Dev 

C / wt% 0.040 3.81 1.52 1.43 

Si / wt% 0 3.21 1.33 1.10 

Mn / wt% 0.04 2.58 0.63 0.42 

P / wt% 0 0.48 0.015 0.02 

S / wt% 0 0.46 0.03 0.102 

Mg / wt% 0 1.25 0.07 0.21 

Cu / wt% 0 1.60 0.183 0.31 

Cr / wt. % 0 16.91 1.28 2.94 

Ni / wt% 0 10.06 1.157 1.21 

Austenitisation temp. / °C 816 1423 936 104 

Temperature step 1 / °C 30 780 161 150 

Time step 1 / min 2 14400 137 812 

Temperature. Step  2 / °C 28 720 226 205 

Time step 2  / min 30 5400 112 402 

Yield stress / MPa 236 2300 1174 388 

UTS / MPa 436 3600 1441 500 

Hardness / HV 48.96 889 547 188 

KIc / MPa m0.5 9.8 295 62.7 35 
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Figure 6.3: Distribution of inputs against the KIc for the chemical 

composition, heat treatment and mechanical properties model.  
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Figure 6.3 (continued): Distribution of inputs against the KIc for the 

chemical composition, heat treatment and mechanical properties 

model. 

6.3 Models training  

The three different approaches, for the three models were trained 

by using neural network technique.   
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6.3.1 Training Mechanical Properties model 

The data set of mechanical properties was used to create six 

committee models using Bayesian neural networks with different 

conditions. Each model has a different number of hidden units and 

random seed to initiate the values of weights.  

Figure 6.5a-f shows plots of predicted versus actual output using 

the committee models from one to six on the whole dataset. There are 

large numbers of outliers in all the models, which represent, bad 

predicted values even for the data already trained and tested. 

The root mean square and perceived errs were calculated manually 

for these six models to compare the performance of these committees as 

shown in table 6.4. Model_2 has the least root mean squared error and the 

least difference between the mean square and perceived error which 

represents standard deviation, in the ideal case the two values should be 

equal.  

Figure 6.6 shows the significance for the best model (model_2). 

Percentage elongation has the highest significance, followed by the yield 

stress and ultimate tensile strength in that order. 

 Due to the poor predictions in all the mechanical properties models, it is 

not recommended to use these models unless more data can be collected 

from the published literature.  It is also clear that mechanical property 

data alone cannot lead to acceptable prediction of KIc in this work, while 

one of the published literatures recommended the use of neural network 

to predict KIc values from tensile test results and crack plane orientation at 

room temperature [90]. 
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                              (a)                                                           (b) 

 

 

 

 

                        

 

 

                             (c)                                                             (d) 

 

 

 

 

 

 

                            

                            (e)                                                             (f) 

Figure 6.5a-f Plots of predicted versus measured output using the 

committee models from 1 to 6 on the whole dataset. 

 



 

 

111 
 

Table 6.4: Performance of the models using the root mean square 

and perceived error for the mechanical properties models. 

The name of the model Root mean squared error Perceived error 

Model _1 30 8.08 

Model _2 24 7.6 

Model_3 27 3.44 

Model_4 28 4.16 

Model_5 30 3.45 

Model_6 27 6.88 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Significance for the best model (model_2) of the 

mechanical properties model, the inputs data listed in table 6.1. 
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6.3.2 Training chemical composition model 

The data in table 6.2 were trained and tested as was explained in 

chapter two. Predictions made using this committee are illustrated in 

figure 6.7 for the entire data. Figure 6.8 shows the significance of the 

input values. It can be seen that the carbon content has the highest 

significance followed by manganese and nickel content both of them 

which have much less significance than carbon. The root mean square 

error has been calculated for this model as listed in table 6.5. 

Table 6.5: Performance of the chemical composition model by using 

root mean square and perceived error. 

The name of the model 
Root mean 

squared error 
Perceived error 

Chemical composition model 31.94 9.74 

 

It is not recommended to use the chemical composition data alone 

as input since it gives poor prediction. With the same chemical 

composition, different experimental values for KIc can be observed 

depending on heat treatment and other parameters. 
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Figure 6.7: Predictions by the best model for the entire data set using 

the committee for the chemical compositions model, the inputs data 

listed in table 6.2. 

 

 

 

 

 

Figure 6.8: Significance for the committee of the chemical 

compositions model, the inputs listed in table 6.2. 
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6.3.3 Training the chemical composition, heat treatment and 

mechanical properties model 

Three models were built with different training and testing sets, 

using the data in table 6.3. Model_2 has the minimum root mean square 

error and the least difference between the mean square and perceived 

error as shown in table 6.6.  Figure 6.9(a-c) shows prediction of the entire 

data for all committees model. Figure 6.10 illustrates the significance of 

each of the input variables in influencing the plane strain fracture 

toughness KIc.  It has been found that the carbon content has the most 

significance followed by the lesser influence of the austenitisation 

temperature. 

Table 6.6: Performance of the models using the root mean square 

and perceived error for the chemical composition, heat treatment 

and mechanical properties model. 

The name of the model Root mean squared 

error 

Perceived error 

Model _1 16.69 3.94 

Model _2 10.82 8.06 

Model _3 14.22 4.84 
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(a) (b) 

 

 

 

 

 

 

 

                                                       (c) 

                                                        
 

 

 

 

 

 

 

 

 

Figure 6.9a-c: Predictions by three committee models, for the entire 

data set for the chemical composition, heat treatment and mechanical 

properties model, the inputs listed in table 6.3. 
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Figure 6.10: Significance for the committee of the chemical 

composition, heat treatment and mechanical properties model, the 

inputs listed in table 6.3.  

 

6.4 Predictive ability 

 The general performance of the model can be tested by predicting 

on unseen data. Two of the three models were found to generalize badly 

and the last model was capable of making useful prediction of unseen 

compositions, figure 6.11, 6.12 and 6.13. These were grouped into those 

within the range of data used for training and those outside the range.  
 

6.4.1 Predictive ability of the model mechanical properties 

 Figure 6.11 shows the prediction of the model to compare with the 

unseen data, the mechanical properties used are shown in table 6.7. Each 

value is within the ranges shown in table 6.1. 
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Table 6.7: Mechanical properties for the steels used to test predictive 

capability model_2 mechanical properties (Appendix A). 

Yield stress / MPa UTS / MPa EL /  % 

1130.71 1430.71 0.39 

800 1050 15 

900 1170 11 

1308 1600 2.2 

1556 1670 15.5 

1470 1900 11.8 

507 587 0.93 

1103 1144 1.05 

1675 1854 13.3 

1660 1765 16 

900 1041 6.7 

1280 1570 3.8 

2593 2670 5.8 

704.93 1054.71 10.8 

737.22 1087 10.67 
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Figure 6.11: Predictions of plane strain fracture toughness in MPa 

m0.5 against the actual plane strain fracture toughness in MPa m0.5 

for committee model _2 mechanical properties. 

6.4.2 Predictive ability of the model chemical composition 

Figure 6.12 shows the prediction of the model to compare with the 

unseen data, the chemical compositions used are shown in table 6.8. Each 

value is within the ranges shown in table 6.2. 
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Table 6.8: Chemical composition in wt% for the steels used to test 

predictive capability (Appendix A).  

C Si Mn P S Mg Cu Cr Ni 

3.59 2.52 0.28 0.04 0.01 0.04 0.43 0 0 

3.7 2.5 0.28 0 0 0 0.8 0 2 

3.48 2.31 0.15 0.03 0.01 0.04 0.45 0 0.45 

3.5 2.47 0.38 0.02 0.01 0.04 0.35 0.5 1.57 

3.45 2.48 0.4 0.01 0.01 0.15 0 0 1.5 

3.4 2.41 0.15 0.02 0.02 0.06 0 0 0 

0.11 0.29 1.39 0.01 0.02 0 0 3.87 0 

0.39 1.06 0.32 0.02 0 0 0 4.91 0.11 

0.89 0.2 0.26 0.03 0 0 0 3.91 0 

1.02 2.45 0.4 0.01 0.01 0 0 0 0.2 

0.82 0.18 0.25 0.02 0.01 0 0 4.15 0 

0.22 0.15 0.4 0.01 0.01 0 0 0.39 0.88 

0.4 0.25 0.7 0.01 0 0 0.06 0.8 1.9 

0.14 0.04 0.12 0.01 0 0 0 1.92 10.26 

0.16 0.05 0.16 0 0 0 0 1.97 10.05 

0.8 0.75 1 0 0 0 0 1 0.5 

0.25 0.8 1 0 0 0 0 0.5 1.25 
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0.53 0.29 0.76 0.01 0 0 0.07 0.8 1.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Predictions of plane strain fracture toughness in MPa 

m0.5 against the measured plane strain fracture toughness in MPa 

m0.5 for committee model chemical composition. 

 

6.4.3 Predictive ability of the model chemical composition, heat 

treatment and mechanical properties 

 Figure 6.13 shows the prediction of plane stain fracture toughness 

for different types of steels and austempered ductile iron within the range 

of the data in table 6.3. The input data are in table 6.9. 
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Table 6.9: The input data for the steels used to test predictive 

capability in model_2, the chemical composition in wt% (Appendix 

A).  

C Si Mn P S Mg Cu Cr Ni 

0.4 2 0.7 0.04 0.04 0 0 0.8 1.83 

0.78 0.36 0.44 0.01 0 0 0 3.9 0 

0.17 0.24 0.5 0.01 0.01 0 0.05 1.93 1.28 

0.8 0.75 1 0 0 0 0 1 0.5 

0.46 0.27 0.65 0 0 1.25 0 0.6 1 

0.8 0.75 1 0 0 0 0 1 0.5 

0.29 0.2 0.5 0.02 0.01 0 0 1.1 4 

0.29 0 0.01 0.01 0.01 0 0.02 0.01 0.01 

0.3 0 0.9 0.01 0.01 0 0.02 0.01 0.01 

0.26 0 1.47 0.01 0.01 0 0.02 0.01 0.01 

3.59 2.52 0.28 0.04 0.01 0.04 0.43 0 0 

0.4 0.19 0.71 0.01 0 0 0 0.76 1.72 

1.02 2.45 0.4 0.01 0.01 0 0 0 0.2 
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Figure 6.13: Predictions of plane strain fracture toughness in MPa 

m0.5 against the measured plane strain fracture toughness in MPa 

m0.5 for committee model_2 chemical composition, heat treatment 

and mechanical properties. 

6.4.3.1 The predictions for super-bainite alloy PP1 

 Figure 6.14 shows the predictive ability for model_2. The input 

data is for super-bainite for alloy PP1 and the same alloy after tempering. 

The chemical composition and heat treatment was presented in chapter 

three. Table 6.10 shows the input data.  
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Table 6.10: the input data for the steel PP1 used to test predictive 

capability in model_2, the chemical composition in wt%.  

C Si Mn P S Mg Cu Cr Ni Ta / °C 

Tt / 

°C 

tt / 

minutes 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

Yield stress 

/ MPa 

 

UTS /  

MPa 

 

Hardness

/ HV 

 

KIc / 

MPa m^0.5 

Measured 

KIc / 

MPa m^0.5 

Predicted 

Error bar 

 

1383 1622 725 30 53.96864 134.278 

1571 1767 725 32.3 58.26289 121.521 

1519 1819 700 27.32 -335.6149 3555.12 

1515 1815 689 22.9 62.66182 250.71 

1326 1626 663 22.99 48.22984 294.381 

1252.6 1552.6 626 20 40.96894 322.317 

1306.8 1606.8 594 22.14 31.48918 353.426 

921.8 1221.8 419 13.81 -1.294846 461.105 
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Figure 6.14: Predictions of plane strain fracture toughness in MPa 

m0.5 against the measured plane strain fracture toughness in MPa 

m0.5 for committee model_2 to the data out of the range (experiments 

carried out in this work) (a) with error bar (b) without error bar. 

It can be seen that the model is weak in the prediction of KIc values 

for the alloy PP1. In the best chemical composition, heat treatment and 

mechanical properties model, the value of the root mean squared error is 

equal to 26.4 and the perceived error is 276.22. There is a huge difference 

between these two values. This difference is due to noise and uncertainty 

because the actual data do not contain data for tempered super-bainite. 

 

6.5 Comparing the performance of the main three models  

Predictions with the best three neural network models were made 

and the corresponding Rtest and Ebar for these three models are given in 

Table 6.11. For the ideal case the two values Rtest and Ebar should be equal 

as it was explained in chapter two. There is a high difference between the 

value of Rtest and Ebar for the mechanical properties model for both seen 

and unseen data. The chemical composition model has also a high 
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difference between Rtest and Ebar for both seen and unseen data. The 

weakness of this model is that a single fracture toughness value is 

predicted for steel with a certain chemical composition. In actual 

applications, fracture toughness varies with heat treatment for the same 

steel. 

There is a low difference between Rtest and Ebar for seen data to the 

last model (chemical, heat treatment and mechanical properties) but still 

has a high difference between Rtest and Ebar   for unseen data.  The 

weakness of this model comes from the assumptions which were taken 

previously in section 6.3.1.3 to complete the missing data concerning 

yield stress, ultimate tensile stress and austenitisation temperature. The 

usefulness of the uncertainty Ebar is the warning it might give to the 

model.  

From this comparison, the last model can be used to predict plane 

strain fracture toughness better than the other two models. However, the 

last model needs more modifications, especially with the predictions of 

the alloy PP1, due to the poor predictive ability for tempered super 

bainite as explained previously.  
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Table 6.11: comprising of the performance of three basic models. 

Model  Rtest Ebar 

Seen data 24.11 7.6 Mechanical 

properties 

Unseen data 25.655 8.111 

Seen data 31.94 9.74 Chemical 

composition 

Unseen data 21.2 12.21 

 Chemical +heat 

+mechanical  

Seen data 10.82 8.06 

 Unseen data 47.09 32.37 

 

6.6 Modified model chemical composition, heat treatment and 

mechanical properties  

A modified new model was built with the chemical composition, 

heat treatment and mechanical properties in an effort to make the model 

more able to predict KIc accurately. The ultimate tensile stress was 

removed from the input data and some of the experimental results 

explained in chapter four were added as new data points. These new data 

points included four KIc values for tempered nanostructure bainite in alloy 

PP1. In total, there were 443 data points for the modified model while the 

previous model has a total of 394.     
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A total of 100 networks were trained by the half of the data and 

tested with another half, the complexity shown in figure 6.15a, as was 

explained in chapter two. The test error has a minimum value with range 

nine hidden units figure 6.15b. The LPE displays a high degree of scatter; 

with a rough peak in eight hidden units, figure 6.15c. More reliable 

results were obtained by combining models into a committee. In this case, 

the optimum committee was found to have fifteen sub models, figure 

6.15d with the minimum test error.  

The modified model has the root mean square error and perceived 

error as shown in table 6.12. Figure 6.16 shows prediction of the 

modified model for the entire data. 

 Figure 6.17 shows the neural network perceived significance, !w, 

for each input variable. In particular, note the committee opinions on the 

significance of carbon, copper, silicon, manganese and nickel. For heat 

treatment, temperature and time of tempering and austenitizing 

temperature have high significance and the hardness has higher 

significance than the yield stress. These are discussed in more details 

later. 

Table 6.12: The performance of the model using the root mean 

square and perceived error for the chemical composition, heat 

treatment and mechanical properties modified model. 

The modified  model Root mean squared 

error 

Perceived error 

Seen data 8.18 6.4 
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(a) (b) 

(c) (d) 

Comparison between the performance of the chemical, heat 

treatment and mechanical properties of the original and the modified 

models shows that the difference between the root mean squared error 

and perceived error for the modified model is less than the same 

difference for the original model for the seen data. 

 

  

 

 

Figure 6.15: Optimum model training reports: (a) Perceived level of 

noise for training, (b) the error between the models and the test data, 

(c) log predictive error for increasing model complexity, (d) 

combined test error for different sizes of committee. 
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Figure 6.16: Predictions by the committee model, for the entire data 

set for the chemical composition, heat treatment and mechanical 

properties optimized model. 
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Figure 6.17:  Perceived significance for the committee of the 

optimized model.  

 6.7 Model predictions 

The toughness of steels depends on many variables as stated 

before. Therefore, it is not possible to predict the plane strain fracture 

toughness with any reliability. It is well known that all materials have 

defects which appear as small cracks and grow during service leading to 

catastrophic fractures. 

The plane strain fracture toughness tests give critical values which 

can be used directly in engineering design. The test involves the initiation 

and propagation of a crack by fatigue cycling at the tip of crack length for 

a certain length. These tests are time consuming and costly.         

Attempts were carried out for improving the mechanical properties 

of super bainite and investigating these types of steels.  A neural network 

model was therefore created to cover a very large range of steels; its 

purpose was to estimate the plane strain fracture toughness as a function 

of many variables as indicated above. Calculations using this model are 

shown in figures 6.18- 6.25.   
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The input compositions for all the predictions made are shown in 

Table 6.12, estimates were not made for all alloys in the database. This is 

the same steel which was used in chapter four for predictions of the 

hardness model.  

Table 6.12: The inputs for the alloy, the chemical composition in 

wt% [71]. 

C  Si  Mn  P  S  Mg  Cu  Cr  Ni  

0.98 1.46 1.89 0 0 0 0 1.26 0 

Austenitisati

on 

temperature / 

°C 

Temp.  

step1 / 

°C 

Time 

step1 / 

mint 

Temp. 

step2 / 

°C 

Time 

step2 / 

mint 

Yield 

Stress 

/ MPa 

Hardness 

/ HV 

1000 200 14400 30 30 1500 619 

 

6.7.1 Effect of chemical composition on plane strain fracture 

toughness 

The effect of carbon content on KIc was explained previously and is 

as shown in figure 6.18. The trend is an increase in KIc with increasing 

carbon content. There is a change in error bars, starting with a relatively 

high error bar at about 0.5 wt% carbon content and then decreasing to a 

minimum at about 0.9 wt% carbon content and then increasing again up 

to 1.2 wt% carbon content. From iron carbon equilibrium phase diagram, 

carbon dissolve completely in the austenite phase between 0.6-1.5 wt% 

carbon content at 1000 °C and the increase of carbon content in the 

austenite phase increases the stability of that phase [28]. The volume 
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fraction of bainite, as calculated according to eq. 2.1, will decrease with 

increasing carbon content and the volume fraction of the austenite stable 

phase will increase. This austenite is supposed to be a tough phase as 

explained before. After 1.2 carbon content, the toughness might decrease 

because the brittle cementite phase will appear with austenite. In the 

region between 1-1.2 C wt%, the prediction shows high error bars and 

sparse and noisy data that give an indication of a probable drop in 

toughness.  

 

                                                (a)                                                        (b) 

 

 

 

 

 

Figure 6.18: Predictions of plane strain fracture toughness in MPa 

m0.5 against carbon content in wt%, (a) with error bars, (b) general 

trend. 

Figure 6.19 shows the effect of silicon on the KIc. The KIc 

increases with an increase in the silicon content from approximately 0.6 

to 2.6 wt%. Silicon hinders the formation of the cementite phase, leading 

to an increase in KIc [96]. Silicon is a ferrite stabilizer; it slows the 

kinetics of transformation to bainite [28, 97] which means more tough 

austenite will form. 
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                                                  (a)                                                       (b) 

 

 

 

 

 

Figure 6.19: Predictions of plane strain fracture toughness in MPa 

m0.5 against silicon content in wt%, (a) with error bars, (b) general 

trend. 

 

Figure 6.20 shows that KIc decreases as the chromium content 

increases. Chromium leads to solid solution hardening which may make 

the ferrite more stable than the austenite. The error bars look almost 

constant, i.e. they come from an uncontrolled variables noise [28]. 
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                                                  (a)                                                        (b) 

 

 

 

 

 

Figure 6.20: Predictions of plane strain fracture toughness in MPa 

m^0.5 against chromium content in wt%, (a) with error bars, (b) 

general trend. 

Figure 6.21 shows that KIc has a minimum value at a copper 

content of      1 wt%. Figure 6.22 shows that the minimum value of KIc is 

at a nickel content of about 2 wt%. These two elements may not influence 

much the microstructure and the toughness of super bainite.  

In general, alloying elements (except carbon) do not affect the 

plane strain fracture toughness that much and only the carbon content has 

a significant effect. 
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                                                 (a)                                                        (b) 

 

 

 

 

 

Figure 6.21: Predictions of plane strain fracture toughness in MPa 

m0.5 against copper content in wt%, (a) with error bars, (b) general 

trend. 

 

                                             (a)                                                           (b) 

 

 

 

 

 

Figure 6.22: Predictions of plane strain fracture toughness in MPa 

m0.5 against nickel content in wt%, (a) with error bars, (b) general 

trend. 
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6.7.2 Effect of austenitisation temperature on plane strain fracture 

toughness 

Figure 6.23 shows that KIc increases as the austenitisation 

temperature increases. The error bars show increasing heights because of 

noise in the data since some austenitisation temperatures were 

approximated as it was explained in the input data.  

 

 

                                             (a)                                                          (b) 

 

 

 

 

 

Figure 6.23: Predictions of plane strain fracture toughness in MPa 

m^0.5 against austenitisation temperature / °C, (a) with error bars, 

(b) general trend. 
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6.7.3 Effect of mechanical properties on plane strain fracture 

toughness 

Figure 6.24 shows a slight decrease in plane strain fracture 

toughness as the yield stress increases. Figure 6.25 shows a decrease in 

KIc with an increase in hardness.  

 

                                  (a)                                                          (b) 

 

 

 

 

 

Figure 6.24: Predictions of plane strain fracture toughness in MPa 

m0.5 against yield stress in MPa for committee, (a) with error bars, 

(b) general trend. 
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                                               (a)                                                         (b) 

 

 

 

 

 

Figure 6.25: Predictions of plane strain fracture toughness in MPa 

m0.5 against Vicker hardness in committee, (a) with error bars, (b) 

general trend. 

 

6.7.4 The combined effects 

The combined effect of carbon and silicon on the plane strain 

fracture toughness for the alloy the details of this alloy was listed in table 

6.12, is shown in figure 6.26a. The figure shows that the carbon content 

has a significant effect with an increase in the KIc with increasing C 

content, while the effect of Si content is minimal. Figure 6.26b shows that 

the height of error bars decreases with the increase in silicon content and 

the minimum value of error bars is between approximately 0.9-1.2 wt% 

carbon content and 1.4-1.6 wt% silicon content. 

Figure 6.27a shows the combined effect of carbon and manganese 

content. Increasing the carbon content and decreasing the manganese 

content increase the KIc. Figure 6.27b shows that the height of error bars 
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is a minimum in the area between 1-1.2 wt% carbon content and 1.3-2 

wt% manganese.  

Figure 6.28a shows the combined effect of carbon and copper on 

the plane strain fracture toughness. It can be noticed that the effect of 

carbon content is more significant than the effect of copper. KIc increases 

with increasing carbon content and the height of error bars increases with 

increasing copper content as shown in figure 6.28b.   

The increase of transformation temperature has more effect on the 

plane strain fracture toughness than the hardness. KIc increases as the 

transformation temperature increases as shown in figure 6.29a. When the 

transformation temperature increases, the bainite volume fraction will 

decrease and the tough austenite phase will increase [28]. Figure 6.29b 

shows the error bars for the combined effect of the transformation 

temperature and hardness. The least height of error bars lays in the area of 

high hardness 560-650 HV and relatively low transformation temperature 

150-275 °C.  
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Plane strain  

fracture toughness 

Height of error bars 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26: (a) Predictions of plane strain fracture toughness in 

MPa m0.5 against carbon and silicon content. (b) The distribution of 

the error bars in the committee. 
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Figure 6.27: (a) Predictions of plane strain fracture toughness in 

MPa m0.5 against carbon and manganese content.   (b) The 

distribution of the error bars in the committee. 
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Figure 6.28: (a) Predictions of plane strain fracture toughness in 

MPa m0.5 against carbon and copper content. (b) The distribution of 

the error bars in the committee. 
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Figure 6.29: (a) Predictions of plane strain fracture toughness in 

MPa m0.5 against hardness in HV and transformation temperature in 

°C (b) The distribution of the error bars in the committee. 
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6.8 Predictive ability  

The general performance of the model can be tested by predicting 

on unseen data. Table 6.13 has the values of the unseen data within the 

range of the modified model. Figure 6.30 shows the predicted plane strain 

fracture toughness against the actual values [98-101].   

Table 6.13: The unseen data used for testing the predictive ability of 

the model, the chemical composition in wt%.  

Ref C Si Mn P S Mg Cu Cr Ni 

[98] 0.3 0 0.6 0.01 0.01 0 0 0 0 

[98] 0.41 0 0.6 0.01 0.01 0 0 0 0 

[98] 0.41 0 0.6 0.01 0.01 0 0 0 0 

[98] 0.25 0.8 1 0 0 0 0 0.5 1.25 

[98] 0.25 2 1 0 0 0 0 0.5 1.25 

[98] 0.25 0.8 1 0 0 0 0 0.5 1.25 

[98] 0.4 0.23 0.7 0.04 0.04 0 0 0.8 1.83 

[98] 0.4 2 0.7 0.04 0.04 0 0 0.8 1.83 

[98] 0.42 1.59 0.76 0.01 0 0 0 0.76 1.76 

[99] 0.78 0.36 0.44 0.01 0 0 0 3.9 0 

[100] 0.8 0.75 1 0 0 0 0 1 0.5 

[101] 0.29 0.2 0.5 0.02 0.01 0 0 1.1 4 

[102] 0.17 0.24 0.5 0.01 0.01 0 0.05 1.93 1.28 
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Figure 6.30: Predictions of plane strain fracture toughness in MPa 

m0.5 against the measured plane strain fracture toughness in MPa 

m0.5 for the modified model of chemical composition, heat treatment 

and mechanical properties. 

Other data concerning alloys with super bainite were collected and tested 

by the modified model. Table 6.14 shows the values of the input 

variables, the output and the measured values for the plane strain fracture 

toughness. Figure 6.31 shows the relation between the predicted and 

measured values. 
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Table 6.14: The performance of the model is in terms of the root 

mean square and perceived error for the chemical composition, heat 

treatment and mechanical properties modified model. 

The modified  model 
Root mean squared 

error 
Perceived error 

For unseen data 29 25 

 

Table 6.14: The input, output and predicted values with error bars of 

super bainite steels, the chemical composition in wt%. 

C 

 

Si 

 

Mn 

 

P 

 

S 

 

Mg 

 

Cu 

 

Cr 

 

Ni 

 

Austenitisation 

temp. / °C 

Temp.

step1 / 

°C 

Time 

step1 / 

minutes 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.97 1.43 1.59 0 0 0 0 0.26 0.04 1000 200 14400 

0.98 1.46 1.89 0 0 0 0 1.26 0 1000 200 14400 

0.8 1.59 2 0 0 0 0 1 0 900 200 5760 

0.8 1.59 2 0 0 0 0 1 0 900 250 960 

0.8 1.59 2 0 0 0 0 1 0 900 300 360 
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0.78 1.49 1.95 0 0 0 0 0.97 0 1000 200 14400 

0.78 1.49 1.95 0 0 0 0 0.97 0 1000 250 14400 

0.78 1.49 1.95 0 0 0 0 0.97 0 1000 300 14400 

0.79 1.56 1.98 0 0 0 0 1.01 0 900 200 5760 

0.79 1.56 1.98 0 0 0 0 1.01 0 900 250 960 

0.79 1.56 1.98 0 0 0 0 1.01 0 900 300 360 

 

Table 6.14 (continued): The input, output and predicted values with 

error bars of super bainite steels, the chemical composition in wt%. 

Temp. 

step2 / °C 

Time step2 

/ minutes 

Yield 

Stress / 

MPa 

 

Hardness  / 

HV 

 

Predicted 

KIc  /            

MPa m0.5 

Error 

bars 

Measured 

KIc  /         

MPa m0.5 

30 30 1383 725 36 61 30 

30 30 1571 725 36 51 32.3 

300 360 1519 700 27 9 27.32 

300 43200 1515.8 689 22 11 22.9 

400 480 1326 663 19 8.5 22.99 

450 360 1252.6 626 18.7 8.5 20 

500 360 1306.8 594 18.5 15 22.14 

606 360 921.8 419 15 10 13.81 

30 30 1500 620 36.4 57 30 

30 30 1400 500 14 46 32 

30 30 1500 589 31.5 39 38 
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30 30 1300 660 36.6 50 45 

30 30 1400 500 26 100 32 

30 30 1350 565 31.9 104 35 

30 30 1300 650 38 119 50 

30 30 1400 466.67 15.9 47.6 32 

30 30 1350 450 37.6 36.4 35 

30 30 1300 433.33 41.77 40.9 50 

 

 

 

 

 

 

 

 

 

Figure 6.31: Predictions of plane strain fracture toughness in MPa 

m0.5 against the measured plane strain fracture toughness in MPa 

m0.5 for the modified model, alloy PP1 and the alloys (B, C and D) 

[34, 103, 104]. 
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6.9 The need for more data 

The data are sparse and certain noise as stated before and a solution 

is needed for this point. It is important that experimental data are reported 

as fully as possible. In particular, the conclusion is unavoidable that the 

extent of KIc cannot be characterised by a single parameter. 

It was found that the mechanical properties (yield stress, ultimate 

tensile stress and elongation) alone do not estimate plane strain fracture 

toughness correctly and more experiments should be added to the data.  

The estimation of plane strain fracture toughness through the 

chemical composition model was found to be unpractical, because for the 

same chemical composition, different values of KIc can be obtained 

dependent on heat treatment and hence mechanical properties.     

Few data for tempered super-bainite was added from experiments 

conducted in this work to the modified model to refine the estimation of 

the KIc values.      

Further work includes the incorporation of new data into the 

training database and the incorporation of further physically significant 

inputs to test their significance. As the models become more refined, their 

ability to identify optimised alloys, such as bainitic steels, widens and 

hence their useful application in engineering improves.  
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7.1     Introduction 
 

This chapter describes the results of experimental work, detailed in 

chapter 3.  The results are used to validate the models for hardness and 

fracture toughness.  

7.2 The results of experiments related to the model of hardness 

Different types of high carbon low alloy steels have been used in 

the experiments to select which of these alloys can be used in automobile 

parts. A quenching dilatometer was used to perform a variety of heat 

treatments. Vickers hardness tests were performed on the alloys shown in 

table 7.1.  

Optical microscopy was used to examine the results of the heat 

treatments. Many of the heat treatments resulted in cracking, especially 

when the hardness was high.    

 

Chapter 7 

Experimental Results and Discussion 
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7.2.2 MT-DATA                                                                                                                                                                                              

 Thermodynamic calculations were carried out with MTDATA 

(Metallurgical and Thermochemical Databank) created by the National 

Physical Laboratory; this is a program that calculates chemical 

equilibrium and phases for a large number of elements in the system 

[105]. It was used to set the austenitisation temperatures; figures 7.1, 7.2, 

7.3 and 7.4. Equilibrium was calculated between ferrite, austenite and 

cementite using STGE plus and SGTE_SUB databases, table 7.1. 

 

Table 7.1: Critical temperatures for the four alloys 

Alloy Ferrite ! 
Cementite 

!  

Austenite 

" 

EE22 700 740 74 0 

EE23 700 803 803 

EE24 687 730 747 

EE25 720 763 763 
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Figure 7.1: Equilibrium calculations for steel EE22. 

 

 

 

 

 

 

 

 

Figure 7.2: Equilibrium calculations for steel EE23. 
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Figure 7.3: Equilibrium calculations for steel EE24. 

 

 

 

 

 

 

 

 

 

Figure 7.4: Equilibrium calculations for steel EE25. 
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7.2.3 Martensite-start temperature  

The calculated and measured martensite start temperatures, Ms, for 

the alloys are shown in table 7.2. The measured readings were obtained 

by using the offset method on the results from the dilatometric graphs 

[106, 107]. The calculated Ms was obtained by using mucg-46 program 

[107, 108]. The measured and the calculated Ms have convergent values.    

Table 7.2: The measured and calculated Ms for the four alloys. 

Alloy 
Ms  

measured / °C 

Ms  

calculated / °C 

EE22 221 221 

EE23 162 130 

EE24 263 276 

EE25 175 194 

 

 

7.2.4 Hardness results 

The hardness for the alloys of the as-quenched microstructure is 

illustrated as a horizontal band on each diagram. These microstructures 

are mixtures of retained austenite and martensite that vary in their 

fractions. Hardness values and standard deviations of the four alloys are 

shown in table 7.3 for the samples directly quenched after austenitisation 

at 930 °C for 30 min. Table 7.4 shows the hardness for the samples 

austenitised at 930 °C and isothermally hardened at 160 °C for 10 min. 

and quenched to room temperature. Alloy EE25 is the hardest.  
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Table 7.3: Hardness and standard deviation with load 50kg for the 

four alloys. 

Alloy Hardness / HV standard deviation 

EE22 775 ±32 

EE23 784 ±8 

EE24 730 ±8 

EE25 828 ±7 

 

Table 7.4: The hardness for the austenitised at 930 °C and 

isothermally hardened at 160 °C for 10 min then quenched to room 

temperature with load 50 kg. 

Alloy Hardness / HV standard deviation 

EE22 754 ±8 

EE23 762 ±6 

EE24 704 ±0 

EE25 803 ±12 
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7.2.5 Kinetics 

The dilatometric results are shown in figure 7.5 (a, b and c), for 

three transformation temperatures in each of the three alloys EE22, EE24 

and EE25 and in the range of bainite transformation. As the temperature 

decreases, the extent of transformation increases. The bainitic reaction 

takes place isothermally, starting with a period during which no 

transformation is detected, followed by an increasing rate of 

transformation to a maximum and then a gradual slowing down [17]. This 

is due to the incomplete reaction phenomenon [16].    

The calculated transformation temperature and TTT diagrams for 

alloys are shown in figure 7.6 (a, b and c) which also contains 

experimental data for the time taken to initiate and cease transformation. 

The measured values for the achievement of dilatometric graph by using 

the offset method [106, 107] for transformation are in reasonable 

agreement with those calculated. Only alloy EE24 is not in full agreement 

with those calculated. 
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Figure 7.5: Isothermal reaction curve for the formation of bainite in 

alloy (a) EE22 (b) EE24 (c) EE25. 
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Figure 7.6: TTT diagrams for the initiation of isothermal reaction. 

(a) Alloy EE22. (b) Alloy EE24. (c) Alloy EE25. 
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7.2.6 Optical Microstructures 

Microcracks were clearly visible in alloys EE22, EE23 and EE25 

specimens austenitised at 930 °C and quenched which contained 

untempered high-carbon martensite plates which are known to be brittle, 

figure 7.7 (a, b, c and d). The cracks propagate across the plates and the 

largest of plates appeared to be periodically cracked as has been 

previously observed [109]. Small amounts of bainite were also be 

observed in alloys EE24 and EE25 upon cooling.  

Figure 7.8 shows the effect of austenitisation temperature on the 

extent of micro-cracking in alloy EE25. After austenitisation at 930 °C, 

the cracks are more severe, crossing through the martensite plates and the 

grain boundaries. By lowering the austenitisation temperature to 800 °C, 

microcracking is only seen across the martensite plates. It is possible that 

quenching the specimens after low austenitisation temperature makes the 

fine martensite shape and avoid the cracks propagating along the 

untempered martensite brittle phase [109, 110]. Small amounts of bainite 

can also be observed in alloy EE25 upon cooling. The plates of 

martensite naturally become finer as austenite grain size, L!, decreases, 

table 7.5. 
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Figure 7.7: Optical micrographs showing micro-cracking of as 

quenched martensite for (a) Alloy EE22. (b) Alloy EE23. (c) Alloy 

EE24 free from cracking in microstructure. (d) Alloy EE25.  
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Figure 7.8: Extent of micro-cracking in alloy EE25 after direct 

quenching from the austenitisation temperature of (a) 930 °C, (b) 800 

°C.  

 

Table 7.5: The austenite grain size and the error after austenitisation 

at two different temperatures.  

T! / °C L! / !m Error   

930 23.8 2 

800 11.0 0.5 
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7.2.7 Bainite in the alloy 

Once the kinetic data for the formation of bainitic ferrite are 

obtained, the bainitic microstructure can be predicted and controlled. 

Figure 7.9 shows a micrograph of bainite in alloy EE24 after the 

specimen is austenitised at 930 ºC and then isothermally hardened at 300 

ºC. Figure 7.10 shows a microstructural comparison between alloy EE24 

and EE25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: Optical micrograph showing bainite in alloy EE24 after 

isothermal hardening at 300 ºC, hardness 546 ± 1 HV with a load of 

50 kg. 
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Figure 7.10: Optical micrograph showing (a) bainite in alloy EE24. 

(b) bainite in alloy EE25. 

 

A steel with a high hardenability is one which has a low critical 

cooling rate, so that even slow cooling will lead to a martensitic structure. 

This has the advantage that a hard material can be generated without the 

risk of “quench cracking” due to low thermal gradients associated with 

slow cooling. Alloy EE24 has been selected after thermodynamic and 

kinetic calculations and microstructural analysis which showed that this 

alloy does not have any cracks.  

When the grain size of the austenite has been reduced by lowering 

the austenisation temperature, the martensite plates become finer and 

thermal cracks disappear after quenching. The grain size of austenite 

15!m 

(b) EE25: Transformation to bainite 
at 250 ºC. Hardness 666 / ±19 HV 
with a load of 30 kg. 

(a) EE24: Transformation to bainite  
at 300 °C. Hardness 546 / ±1 HV 
with a load of 50 kg. 

15!m 
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decreased to about 50% after lowering the austenisation temperature from 

930 ºC to 800 ºC for the alloy EE25.  

7.3 The results of experiments related to the model of fracture 

toughness 

 This section is concerned with the results related to the 

experiments on alloy PP1; the chemical composition and heat treatment 

of the alloy were explained previously in chapter three. This work studied 

the effect of tempering for different times and temperatures on the 

stability of the microstructure and mechanical properties in this alloy. 

7.3.1 Hardness  

 Tempered bainite for the alloy PP1 at 400 °C with different tempering 

times showed a small variation in the hardness as illustrated in table 7.6. 

The general trend is a slight decrease in hardness as the tempering time 

increases. This is in agreement with the work of Peet et al. on the 

tempering of an alloy of super-bainitic steel [103]. Figure 7.11 shows the 

measured hardness against different tempering times. In the present work, 

and consistent with Peet's work, no strong influence of tempering time on 

hardness has been found. The bainitic microstructure resists the 

tempering treatment, which is different from the response of the 

martensite microstructure [111].     
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Table 7.6:  The hardness for tempered bainite at 400 °C with 

different times. 

Tempering  Time / min Hardness / HV Error / % 

0 645 ±  8 

50 632  ±  10 

100 637  ±  6 

120 625 ±  10 

150 628 ±  8 

200 626 ± 12 

240 625 ±  9 

250 625 ± 11 

360 611 ±  8 

480 612 ±  9 
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Figure 7.11: The variation of hardness of bainite with tempering time 

for alloy PP1, at a temperature of 400 °C  and some experimental 

and calculated values from Peet's work  for alloy A1 [103], and from 

Podder and Bhadeshia's work for alloy B2 [112]. 

Table 7.7 and Figure 7.12 show the variation of hardness of bainite 

with tempering temperature. The results show that the hardness falls 

sharply as tempering temperature increases above 450 °C. These results 

are consistent with those reported for low temperature bainite [30, 103]. 

 

 

 

 

 

                                                      

1 0.79C-1.59Si-1.94Mn-0.02Ni-1.33Cr-0.3Mo wt%. 
2 0.22C-2.03Si-3Mn wt%. 
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Table 7.7: The hardness of tempered bainite after tempering for 6 

hours at different temperatures. 

Tempering Temp. / °C Hardness  / HV Error / % 

0 645 ± 8 

300 642 ± 5 

350 619 ± 6 

400 611 ± 8 

450 626 ± 6 

500 556 ± 10 

550 467 ± 5 

600 377 ±4 
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                     As transformed 

 

 

 

 

 

 

 

 

Figure 7.12: The variation of hardness of bainite with tempering 

temperature; tempering time for alloy PP1 is 6 hours and for alloy A 

is 1 hour [30, 103]. 

7.3.2. XRD test results 

The volume fractions of the phases in the alloy PP1 were measured 

in the as-transformed condition and after tempering using X–ray 

diffraction as shown in figure 7.13. Table 7.8 shows the volume fraction 

of retained austenite, bainitic ferrite and the lattice parameter of austenite. 

It can be stated that the volume fraction of retained austenite decreases 

with the increase of the tempering temperature as shown in figure 7.13b 

and figure 7.13c, the austenite peaks decrease in intensity while those of 
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ferrite become more in tense. It is clear that there is still austenite in the 

microstructure even after tempering at 450 °C. It is speculated that a 

small amount of austenite will still be present in the structure until the 

tempering temperature reaches 500 °C, but will completely decompose 

just below 550 °C which leads to a change in thickness of the bainite 

plates as was explained in [103].   

 

Table 7.8: Result of X-ray diffraction analysis. 

Condition Austenite / % Lattice 

Parameter for 

austenite/ Å 

Ferrite / % 

As transformed 32±0.000113  3.6265±0.000198 67.9±0.00073 

Tempered at 400 °C for 

6h 

15.5 ± 0.4 3.60743 ± 0.0004 84.52 ± 0.4 

Tempered at 450 °C for 

6h 

4.5 ± 0.55 3.5988 ± 0.0056 95.48 ± 0.55 
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                                                                                           (a) 

 

 

 

 

 

 

 

Figure 7.13: The XRD of material PP1, (a) as transformed, (b) after 

tempering at 400 °C for 6 h (c) after tempering at 450 °C for 6 h. 
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                                                                                              (b) 
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Figure 7.13 (continued): The XRD of material PP1, (a) as 

transformed, (b) after tempering at 400 °C for 6 h (c) after 

tempering at 450 °C for 6 h. 
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7.3.3 Tensile properties 

The yield and ultimate tensile strength of alloy PP1 in the isothermally 

hardened condition were 1383 MPa and 1622 MPa respectevly. Figure 

7.14 shows the stress-strain diagram of the alloy after tempering at 450 

°C for 6 h and the yield stress for the alloy in this condition was found to 

be 1253 MPa.  The results of tensile tests for the alloy after tempering at 

different temperatures are shown in Table 7.9. The mechanical properties 

did not greatly change with different tempering temperatures. The sample 

tempered at 400 °C gave an unreliable value possibly due to presence of 

defects or inclusions in the samples.   

 

 

 

 

 

 

 

 

 

  

Figure 7.14: The tensile test for sample tempered at 450 °C for 6 h. 
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Table 7.9: The values of yield strength (!y) and ultimate tensile 

strength (!u) for the samples tempered at different tempering 

conditions.  

Sample Condition !y  / MPa !u / MPa 

Isothermally hardened 1383 1622 

Tempered at 300 °C for 6 hours 1285 1285 

Tempered at 400 °C for 8 hours 950 968 

Tempered at 450 °C for 6 hours 1253 1289 

 

Tempered at 606 °C for 6 hours 1267 1514 
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7.3.4 Fracture toughness  

 Figure 7.15 shows the load-displacement trace of the fracture 

toughness test for the alloy PP1 in the isothermally hardened condition. 

Reported plane strain fracture toughness value is 30 MPa m0.5 for the 

isothermally transformed material. In this work, KQ was found to be 

31.18 MPa m0.5 as shown in table 7.10 which is close to the standard 

value. 

 

 

 

 

 

 

 

 

 

Figure 7.15: Load-displacement trace of the fracture toughness test 

for alloy PP1 in the isothermally hardened condition. 

Table 7.10 lists the KQ values for these tempering conditions and 

the validity of the plane strain fracture toughness tests. The general trend 

is a decrease in fracture toughness as the tempering temperature 

increases. This is related to the microstructure of this alloy. As it was 

explained in [30, 103],  this is consistent with grain growth when it starts 

to occur and is not chiefly dependent upon carbon in solid solution.  
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Table 7.10: The values of KQ for the samples tempered at different 

tempering conditions on the alloy PP1.     

Sample Condition 
KQ / 

MPa m0.5 
Status Reason 

Isothermally hardened 31 Not valid 
ac

3 out of the 

range 

Tempered at 300 °C for 6 hours 27 Not valid Pmax
4
 /PQ

5 > 1.1 

Tempered at 300 °C for 1 month 23 Not valid 
ac less than the 

range  

Tempered at 400 °C for 8 hours 23 Valid - 

Tempered at 450 °C for 6 hours 20 Not valid 
ac less than the 

range 

Tempered at 500 °C for 6 hours 22 Valid - 

Tempered at 606 °C for 6 hours 13.8 Not valid Pf
6

 / PQ > 0.6 

 

7.3.4.1 The fracture surface 

Figure 7.16 shows an optical macrograph of the fracture surface of 

compact tension sample of PP1 alloy transformed at 200 °C for ten days 

and tempered at 606 °C for 6 h, after fracture toughness testing.  There 

                                                      

3 the average crack length does not satisfy the standard  requirements  
4 maximum applied load  
5 the peak fracture toughness load  
6 the maximum fatigue load 
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are two distinct fracture areas, one represents the fatigue pre-cracking and 

the other represents the static tensile fracture.  

Figure 7.17 shows SEM for the fatigue pre-cracking area after 

tempering at 450 °C for 6 h. Multiple micro-cracks can be seen during 

fatigue cracking with crack growth along the prior austenite grain 

boundaries  

 

 

 

 

 

 

 

 

 

Figure 7.16: Optical macrograph (magnification 3.16!10 3) with of 

the fracture surface after a fracture toughness test, sample from alloy 

PP1 tempered at 606 °C for 6 h.  
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Figure 7.17: SEM of the fatigue pre-cracking area showing multiple 

micro-cracks, sample from alloy PP1 tempered at 450 °C for 6.  

 

7.4 Conclusions 

Alloys EE22, EE23, EE24 and EE25 have been directly quenched 

to martensite and also isothermally transformed to bainite. The hardness 

was measured for both heat treatments and metallographic analysis was 

carried out to identify the best alloy from these four alloy steels. Large 

cracks have been found inside the microstructure of the alloys EE22, 

EE23 and EE25. Reduction of the austenitisation temperature to a value 

just higher than  Ae3 temperature in alloy EE25 has led to complete 

disappearance of the cracks due to smaller austenite parent grain size. The 
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results of the hardness of these alloys will be used in chapter five to 

verify the accuracy of the hardness model.  

More experiments were carried out on another alloy PP1.  This 

alloy has been transformed isothermally to a baintic structure and 

tempered at different temperatures. Experimental results of plane strain 

fracture toughness tests show that the candidate values of plane strain 

fracture toughness decrease as the tempering temperature increases. Some 

of the results of plane strain fracture toughness will be used as input data 

to build a plane strain fracture toughness model and the rest will be used 

to verify this model.  
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8.1  Conclusions  

 From the work of the present study, the following conclusions may 

be drawn:  

1- It was possible, through the application of thermodynamics and 

kinetics principles, to control the microstructure of four high-

strength alloy steels. One of the alloys studied was free from 

thermal cracks and was recommended for use in the automobile 

industry. 

2- Keeping of the austenitisation temperature to a level just above the 

upper critical temperature Ae3 reduced the probability of the 

appearance of thermal cracks after direct quenching. 

3- The super-bainitic microstructure of a high-carbon, high-silicon 

low-alloy steel was found to be resistant to tempering, and the 

hardness and tensile properties of the alloy were not greatly 

affected by tempering. Fracture toughness however, showed a 

general decrease as the tempering temperature was increased. 

Chapter 8 

General Conclusions and Proposed 

Further Research 
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4- Neural-network models have been developed for the estimation of 

Vickors hardness, volume percent of bainite and plane-strain 

fracture toughness respectively. The work has been applied to 

super-bainite steels. 

5- The model of  hardness is validated through new experiments 

carried out in this work for certain types of steels. The model gave 

satisfactory predictions. 

6- A neural network model has successfully been used to predict the 

volume percent of bainite for a wide range of steels including the 

super-bainite steels. 

7- A neural network model based on either mechanical properties 

alone or chemical composition alone did not give a satisfactory 

prediction for plane strain fracture toughness. 

8- A neural network model based on chemical composition, heat 

treatment and mechanical properties has been proposed to predict 

the plane-strain fracture toughness of steels. In general, the 

predictions are acceptable but the modelling uncertainty tends to be 

large. More input data need to be collected for bainitic steels as 

more research is published in the future to improve the predictions 

of the model. 
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8.2 Proposed further research 

1. Introducing the time of isothermal transformation as an input 

variable in an effort to improve the models of hardness and bainite 

volume percent.  

2. Study of the effect of tempering bainite at high temperatures on the 

plane strain fracture toughness.  

3.  Study of the effect of other alloying elements, such as copper, on 

the super-bainite steels to enhance the plane strain fracture toughness.  

4. Use Gaussian processes modelling to estimate the hardness, 

volume percent of bainite and plane strain fracture toughness instead 

of neural-network modelling and compare the prediction of the two 

modelling methods. 
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the fracture toughness model 
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ac Critical crack length mm 

Ae1, Ae2 Lower and upper equilibrium temperatures °C 

Ac1 , Ac3 Lower and upper critical temperatures °C 

B Thickness of sample  for compact tension  test mm 

ci Concentration of a substitutional solute  

Ci Chemical composition Wt% 

ED Overall error  

Ew Training regulariser  

Ei The error accompanying each prediction  

Ebar Average size of error bars  

HV Vickers hardness  HV 

H! Hardness of retained austenite HV 

H!' Hardness of the martensite HV 

Ho Martensite hardness at a carbon content of =0.43 HV 

Hb Hardness of baintic ferrite HV 

Nomenclature 
 



 ii 

hi Hidden unit of the network 

KL Coefficient for strengthening due to lath size 

Kp Coefficient for strengthening due to dislocations 

K Stress intensity factor MPa m0.5 

Kc Critical stress intensity factor MPa m0.5 

KIc Plane Strain Fracture toughness MPa m0.5 

Kmax Maximum stress intensity factor MPa m0.5 

KQ Candidate or conditional fracture toughness MPa m0.5 

L Model used to obtain the prediction y(l)  

L Number of models in the committee  

 The mean linear intercept  

LPE Log predictive error  

M Objective function  

Ms Martensite-start temperature °C 

Mp Mechanical properties  

N The total number of predictions  

Pmax Maximum applied load N 

PQ Peak fracture toughness load N 

Pf Maximum fatigue load N 

Q Constant dependence of martensite hardness on 
carbon content (1020 HV/ wt%) 

 

Rtest Root mean square residual (RMS)  

S Amount of carbon trapped in the bainitic ferrite  



 iii 

T Temperature  °C 

Ta Austenitising temperature °C 

Ttemp Tempering temperature °C 

ttemp Tempering time  Min 

T0 Te zero curve (the free energies of austenite and 
ferrite of the same chemical composition are 
identical)   

 

 The Te zero curve plus strain energy   

T1 The temperature corresponding to the free energy 
curves 

°C 

Tq The lowest temperature reached during quenching °C 

T1t, Tt2 Transformation temperature step1 and step2 used 
for  the model of fracture toughness  

°C 

tt1, tt2 Time needed for the transformation step1 and step2 
used for  the model of fracture toughness 

Min 

tk The set of outputs  

T! Austenitisation temperature °C 

T Plate thickness of bainite µm 

L! Austenite grain size µm 

Vb Volume fraction of bainite 

V! Volume fraction of cementite 

W Weights 

UTS Ultimate tensile strength MPa 

", # Control parameters 



 iv 

$, $(1), $(2) Constants used in neural-network 

 Martensite phase 

 Bainite phase 

 Widmanst tten ferrite phase 

 Austenite carbon content  

 Average carbon concentration in the alloy  

 Carbon concentration of the bainite  

!, " The phases of austenite and ferrite   

wt % Weight percentage   

 Strength contribution MPa 

"Fe Strength of pure iron MPa 

"ss Strength of solid solution  MPa 

"c Strength due to carbon in solid solution MPa 

% Constant number (3.14) 

"w Significance of the input in the neural-network 

& Yield strength MPa 

V! Volume fraction of retained austenite  

X Un-normalised value in the database  

xmin,  xmax Minimum and maximum values in the database 

xj Normalised value in the database 

xk Set of inputs 

yk Set of corresponding network outputs 



 v 

 Uncertainty of fitting 

Y A parameter which depends on specimen and crack 
geometry 

 

Y Output of the neural network 

y(l) Prediction obtained with the model l 
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