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s it possible the ab initio
thermodynamics with defects?




Phase-Diagrams: The first-step of materials design
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Fe-Fe,;C Phase Diagram, Materials Science and Metallurgy, 4th ed., (Pollack, Prentice-Hall, 1988)
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Process design with kinetics
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Defects generate heat, e.g., Potevine-LeChatelier (PLC) effect
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Fig. 1. (a) Stress—strain curve of Fe0.6C18Mn TWIP steel. (b)
Enlargement of the first boxed segment of the stress—
strain curve exhibiting type A serrations, characterized by
a steep rise in stress alternating with plateau-like features.
(c) Enlargement of a typical type A serration. The steep
rise corresponds to the initiation of a PLC band outside
the strain gauge measuring range. The plateau segment
corresponds to the passage of the PLC band in the strain
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plateau segment, suggests strain hardening in the region Twin A: dislocation mean free path
outside the PLC band. (d) Enlargement of the type B ser- . e & 0 c [ B J

rations, characterized by a unstable serration pattern.
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Obstacle: atom / dislocation

Fig. 8. (a) Low SFE model: a low SFE leads to widely dissociated partial dislocations, which cannot cross slip. This pro-
nounced planar slip results in a high strain hardening rate. (b) Dynamic Hall-Petch model of Bouaziz—Guelton: at
low SFE, twinning is promoted. The intersection of twins forms a cell structure. The twin boundaries act as obsta-
cle for dislocation glide. (c¢) Planar slip model: in concentrated solid solution alloys short range order (SRO) is
possible and dislocations will destroy the SRO on their slip plane. Whereas the leading dislocation experiences a
high resistance to its motion, subsequent dislocations can glide more easily in the same slip plane. This favors
planar slip and result in a high rate of strain hardening. (d) Illustration of the reduction of the SRO during the pas-
sage of partial dislocation on their glide plane: the octahedral clusters are sheared and the C atoms are transferred
to tetrahedral interstitial sites. Left: before slip. Right: after slip. (¢) Dastur—Leslie model: dynamic stain aging in
FeMnC alloy is caused by the re-orientation of Mn—C cluster in the dislocation stress field during dislocation
motion.
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A material as a system hy muitiscale simulation
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Topological defects = The prophecy of P. W. Anderson

Boyer and Vifials, Phys. Rev. E 65, 046119 (2002)
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“I do not accept that this is a philosophical difficulty, \\\\\\\\\‘V
or that it demonstrates anything like an impossibility in principle ‘
of treating macroscopic objects quantum-mechanically;

merely that this discussion brings out the practical problems of
determining all the relevant phases in a given system.”

In Basic Notions of Condensed Matter Physics (Addison Wesley, 1997) p. 51.
Zurek-Kibble domain structure: Phys. Rev. Focus, 12 May 2006
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Geometric theory of defects

Elastic deformation (Euclidean)

Katanaev, Phys. Usp. 48, 675 (2005)

xt =yl +ul(x)

|

The ground undeformed state of the medium
=>»The external observer fixes

Riemann-Cartan manifold theory a Cartesian coordinate system (Gauge fixing).
The deformed medium,
Levi-Civita connection (Christoffel symbols) > The external observer discovers

that the metric becomes nontrivial
in this coordinate system.

torsion nonmetricity

Curvature tensor of the affine connection Topologlgl defects

Einstein equation for 3D gravity




Example: Dislocations

Burgers vectors constructed by the Volterra process

Figure 2. Straight linear dislocations. (a) The edge dislocation. The
Burgers vector b is perpendicular to the dislocation line. (b) The screw
dislocation. The Burgers vector b is parallel to the dislocation line.

- Invariant under arbitrary coordinate transformation,
- Covariant under global SO(3) rotations of y'.
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Figure 3. Section of the medium with the edge dislocation. C is the
integration contour for the Burgers vector b.

Introduce a vielbein

With the Cartan torsion tensor T




Single-particle quantum motion on a Riemann-Gartan manifold

Bausch et al., Phys. Rev. Lett. 80, 2257 (1998)

The tight-binding Hamiltonian

The distortions by defects

The affine connection and the covariant derivative

with the torsion tensor, measures the defect density.

The new Hamiltonian with defects for the continuum limit a0




Aharonov-Bohm effect of the spin wave by a screw dislocation

We shall now present the solution of equation (10) for
a single screw dislocation along the z axis with the Burgers
vector b = be;. The only nonvanishing components of the
Kréner distortions B are then 87, i = 1,2:

B = —%32 Inv/(x")? + (x2)2
B = Z%al Inv/(x)? + ()2

Assuming in the cylindrical coordinates W(r,¢.,z,1) =
x(r,@)exp(ikz + iwt) we found that the envelope x(r, @)
obeys the Aharonov—Bohm equation [18]:

2 2
[8 _|_l J +l(i+1a) —qz]x(f.¢)=0» (12)

ar? " ror 2\

where @ = kb/2m and ¢*> = k? + 2pw. Using the asymptotic
r — o0 solution for that equation [12, 18-20] and recalling
the definition of the function W we found

(gg’:) =S (_C(;fn) (xgp + grcos )

Turski and Minkowski, J. Phys. C: Condens. Matter 21, 376001 (2009)

&Sy component of the Spin Wave

(11

sin(wa)
cos(¢/2)\/2mqr
cos
x (Sin) (@r +a(é —7)/2lel — 7/4). (13)

In the absence of the dislocation the (pseudo)flux @ = 0 and —40 =20 0 20 40
we recover the standard spin wave solution of equation (1). ) ) ) ) )

The first term on the rhs of equation (13) shows the helical FlgUl:e 1. Mathematica 7'den51ty Plo't for spin wave Sy solution
structure of the incoming spin wave due to global distortion of equation (13). The wave is approaching from the right and deflects

the lattice and the second describes the scattering phase shift from the screw dislocation line located at the origin and

due to the presence of dislocation. In figure 1 we have shown perpendicular to the plot surface. The wavy edges of the cut to the
a Mathematica 7 generated density plot for the 85, component left from the dislocations show the Aharonov—Bohm-like oscillations

of the solution (13). The §Sx component exhibits an identical determined by the (pseudo)flux & = 0.4.
structure with a trivial phase shift found from (13).




Gauge theory of moving dislocations

The dislocation density tensor and the dislocation current tensor

Lazar, Phys. Lett. A 374, 3092 (2010)

Satisfy the translational Bianchi identities,

The Lagrangian density

The equations of motion

By adding null Lagrangian, satisfying

momentum balance of dislocations

stress balance of dislocations
force balance of elasticity

Usual solution: massive fields Klein-Gordon equation

With (1+2)-dimensional d’Alembert operator,




Thermodynamics on flat space
Matsubara-Green-Kubo formalism

Grand canonical partition function,

By introducing the imaginary-time, the temperature Green’s function

satisfies the Schwinger-Dyson equation as

with the noninteracting Green’s function

In terms of the spectral function, the Lehmann representation of the Green’s function is
->

The corresponding real time Green’s function is




Thermodynamics of biack holes

Hartle-Hawking-Gibbons-Perry formalism

An action functional

The amplitude

The propagator

Introducing the negative imaginary parametric time

Hartle and Hawking, Phys. Rev. D 13, 2188 (1976)

(a)

FIG. 2. (a) A compactified representation of a con-
stant 6, constant ¢ slice of the positive-definite space-
time whose metric is given in Eq. (2.6). The heavy
circle represents infinity. There are no singularities.
A typical path connecting two points x’ and x is shown.
(b) A Penrose diagram for the Schwarzschild geometry
showing in addition the regions of negative mass (or
r=0) above and below the singularities. A typical mem-
ber of the class of paths continued analytically to this
real section from the positive-definite spacetime repre-

then sented in (a) is shown. Such paths may cross and re-
cross the singularities at » =0. Integrations over paths
which cross the singularities are specified by choosing

S ati Sﬁes Where contours of integration which are the analytic continu-
ations of those in the positive-definite section,

- S: the square of the Minkowski interval
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Froure 3. The complex ¢—¢# plane. Gy is analytic in the shaded regions. G, is obtained
by analytically continuing along the dotted paths. It is a periodic function of period
£ = 4T

Gibbons and Perry, Proc. R. Soc. Lond. A 358, 467 (1978)

For the metric,

with the Klein-Gordon Lagrangian density

the diffusion equation,
of the normal mode 1 yields the partition function

for small .




Gonclusion

e A fully quantum field theoretic formalism is available for thermodynamics with defects.
* This approach promises the authentic ab initio thermodynamics by eliminating ad hoc ones.
* Computational Practicality? See, below simulations by serious scientists.

The radial velocity of the convection of a full white dwarf.
Appeared in Astrophysical Journal 704, 196 (2009).

Matter collapse into a donut black hole. Two colliding galaxies.
Appeared in Science 275, 476 (1997). By S. Kazantzidis, University of Chicago




