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Introduction

We have deal with the problem of recrystallisation of oxide dispersion strengthened
Fe-Cr (ODS).
Exceptional high recrystallisation temperatures (0.9 of melting temperature)

Extremely coarse final grains, some orders of magnitude bigger than the initial microstructure

Many different recrystallisation simulations try to explain the behaviour of grain
growth and migration

Cellular automata, Monte Carlo, Finite Element Modelling, Vertex, ...

Grain boundary energy vs.  Grain boundary Energy + Mobility

Grain 1
Grain boundary energy o1 Grain boundary mobility
measures the extra energy measures how easy
of the atoms in the surface Grain 2 atoms transition from one
with respect to the bulk 02 grain to another grain

|

|

Pinning forces

» Type of boundary Grain 1 * Type of boundary
» Chemistry of boundary o1 * Chemistry of boundary
+ Dislocations
* Induced strain
Gfgi; 2 « Point defects

Triple junctions
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Molecular Dynamics
_

o The classical approach of Finnis-Sinclair has been used to compute the compute the
movement of atoms

Good fitting with physical and mechanical properties of iron and chromium. BCC structure
= Fe cell parameter is 2.8665 A. Cohesive energy per atom of -4.28eV
= Cr cell parameter is 2.8845 A. Cohesive energy per atom of -4.10eV

It has been successful in modeling defects of surfaces, interactions between atoms and for calculating grain
boundary energies.

The parameters for the pairs Fe-Fe and Cr-Cr has been chosen from the original work of Finnis and Sinclair
[1-2] and for the Fe-Cr interactions, the Lorentz-Berthlot rule has been used.
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C represents a cutoff parameter, c,, C,, C5 are fitting parameters, d is a different cutoff parameter, A binding energy



Molecular Dynamics

The classical approach of Finnis-Sinclair has been used to compute the compute the
movement of atoms
Good fitting with physical and mechanical properties of iron and chromium. BCC structure
Fe cell parameter is 2.8665 A. Cohesive energy per atom of -4.28eV
Cr cell parameter is 2.8845 A. Cohesive energy per atom of -4.10eV

It has been successful in modeling defects of surfaces, interactions between atoms and for calculating grain
boundary energies.

The parameters for the pairs Fe-Fe and Cr-Cr has been chosen from the original work of Finnis and Sinclair
[1-2] and for the Fe-Cr interactions, the Lorentz-Berthlot rule has been used.
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Simulating Grain Boundary Mobility
S

o Grain boundary energy is computed by setting up two different orientations
and defining a connecting plane
o No curvature => No curvature driven mobility measurement is possible

o The initial configuration of the grain boundary energy computations are not able to say anything
about mobility.

o We need a curved boundary to have a pressure on the surface.
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Grain Boundary Choice

0 <110> Symmetric Tilt Grain boundary:
Mechanically alloyed metals has in general has a <110> fiber tilt boundary

characteristics

Obviously it can be represented LAGB and HAGB

CSL nomenclature (coincident site lattice) has influence in some cases

= It is of paramount importance in some specific cases, although in general LAB or HAB
have higher effect on grain boundary properties.

In general tilt boundaries (symmetric or asymmetric) are the most common

boundaries

= Symmetrical tilt boundaries are very useful for molecular dynamic simulations. Easy

boundary conditions
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Grain Boundary Choice

S
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Grain Boundary Set Up

o Segregation must be considered if two different kind of atoms are involved

Why ? ... Previous evidences in very pure system (Al), just a little amount of impurities can affect drastically the
mobility

= 99.9992 % Al is two orders of magnitude lower than 99.99995 %Al

Experimental results on mechanically alloyed metals did not detect segregation
in the boundary or in the bulk

= High recrystallization temperature

Site of Substitutional Impurity Cr

= Kinematics of diffusion are slower than cooling Site A boundary —0.220
surface —0.560

process ST —0.340

.. .. Site B boundary —0.170

m  Similar atoms Fe-Cr. Other “less” similar atoms can surfac:n' —0.560
Esue-Ebouna —0.390

affect Site C boundary —0.100

. . surface —0.340

= Oxide particles E e Foound —0.240

= Predominant Low angle misorientation
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Simulation Results
1
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Low mobility
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Simulation R
1

o Case 26.5°
High Mobility
#m M*=9E® m/s?
Low Activation Energy
= Q=06leV

High grain boundary energy
= y=2.2 J/m?

Grain boundary structure
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Simulation Results

o Case 109°

Very High mobility
m M*=15E®° m/s?

Very Low Activation Energy
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Results
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Simulation Results

O

We have computed a set of representative boundaries for three different medium
and high temperatures

<110> symmetric tilt
Grain boundary energy
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A Previous work [1] reports similar mobility in ODS PM2000 (Fe-20Cr-5Al) , although an
activation energy significantly higher than simulations:

[1] C. Capdevila et al. ISIJ International, Vol. 43 (2003), No. 5, pp. 777-783



Conclusions

Hat-shape geometry has been tested to compute mobility in the Fe-Cr system without
segregation in the boundaries

LAGB has in general lower mobility that HAGB

But LAGB / HAGB classification is not enough to classify the mobility of a boundary
Configuration of atoms affect mobility as well as affects grain boundary energy
Low energy in HAGB has very high mobility
Some HAGB behave as LAGB

| seems to be a relationship between grain boundary energy and mobility

Previous works [1] report similar mobility in ODS PM2000 (Fe-20Cr-5Al) , although an activation
energy significantly higher than simulations:

Pinning particles

more elements

texture dominated by LAGB

Future work

Comparison with U-shape bicrystal geometry Thank yOU fOf
Stress induced mobility your attention
Longer simulations with segregation at the boundaries U

Effect of Dislocations and vacancies
More elements (Al)

[1] C. Capdevila et al. ISIJ International, Vol. 43 (2003), No. 5, pp. 777-783
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