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tential for making high quality steels but far behind

 the scientific understanding due to the complex n

ature of that the phase transition and deformation t

ake place simultaneously. Numerical simulation of t

hree-dimensional crystal growth in deformation de

monstrates interesting morphological evolution, an

d is understood by combining crystal anisotropy an

d free energy minimization.  
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Nomenclature 
 

 

 

 

φ   Phase-field parameter 

T   Temperature 

c   Composition 

ε   Gradient energy coefficient 

ε   Mean value of gradient energy coefficient 

G   Free energy 

0g   Free energy per unit volume of a 

homogeneous phase of composition c  at 

temperature T  

bg   Chemical free energy of bulk phase 

ω   Coefficient reflecting the excess free energy 

n   Normal direction to the interface 

( 1,2,3)ik i =   Coefficients reflecting anisotropy 
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Mφ   Phase-field mobility 

t   time 

2λ   Interface thickness 

σ   Interface energy 

ν   Interface propagation rate 

xΔ   Lattice distance 

γ   Radius of spherical seed 

L   Characteristic length 

cD   Carbon diffusivity in steel 

R   Gas constant 

mV   Molar volume of the material 

hu   Grid function 

Ω   Grid cell 

l   Contour of the cell 

cT   Martensitic transition temperature 
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Chapter 1 
 
 
 

Introduction 
 
 
 

1.1 Overview 
 
Rolling services the purposes of breaking down materials dimension 
as well as improving their mechanical properties. Figure 1.1 
illustrates schematically one of the simplest rolling processes. There 
are many different kinds of rolling in terms of the strain and stress 
relationships. Sometimes those different types of rolling can be 
combined together to achieve designed geometry or properties. Even 
in the simple case as illustrated in Fig. 1.1 where there is only one 
type of deformation, several passes may be made to achieve the 
desired decrease in thickness.  

 

 

 

 

 

 

 

 

Figure 1.1: schematics of rolling process. 
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Rolling can be categorized into hot, cold and warm works. The 

former two deformations take place in single-phase area, i.e. no 

considerable phase transition is going on during materials 

deformation. Most of the engineering applications in the current 

stage are felled into those two categories and are called hot rolling 

and cold rolling, separately. 

 

The present work focuses on the third category - warm rolling. The 

rolling temperature is at the austenite-ferrite two-phase region in 

Fe-C phase diagram instead of just one phase existence, and the 

fraction of each phase can change via phase transition [1].  In 

comparing with hot rolling, warm working can make material closer 

to its final shape and with better mechanical properties. In 

comparison with cold rolling, it saves energy and avoids some heat 

treatments such as baken hardening and annealing and removing 

residual stress. It is also found the warm rolling in the upper ferritic 

region produce profitable microstructure. The comprehensive 

microstructure evolution in warm rolling provides an economical 

and technically viable operation. 

 

Whilst the metallurgy of the hot and cold rolling of steel has been 

extensively studied, that of warm rolling has not received anywhere 

near the same amount of attention. This is probably because there 

has been much less industrial interest in this process. However, in 
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recent years there is an increasing need to understand the metallurgy 

of warm rolling, which particular attention being paid to factors 

influencing the properties of the final product. A number of 

investigations have been done to consider the micro and macro 

behavior of material during warm rolling and phase transition [2-3].  

The effect of rolling speed on strain aging phenomena in warm 

rolling of the carbon steel has been investigated [4]. The deformation 

microstructure of various warm rolled steels was characterized and 

its influence upon the subsequent annealing behavior was conducted 

[5-6]. However, warm rolling is still far from a common process in 

the context of the huge quantities of steel manufactured in the world, 

because the full mechanisms involved in warm rolling process to 

generate the final microstructure and crystallographic structures are 

not understood. Thus, understanding of material behavior is of 

importance for designing a proper rolling process and more studies 

are required to understand the phenomenon of this process. 

 

During warm rolling process, homogeneous deformation occurs in 

phase transition affecting grain geometry. It brings out not only the 

direct distortion of grain morphology in a manner to comply with 

strain, but also changes the area of grain size and length of the grain 

edges. As a consequence, it affects the final microstructure and 

properties of the product through in the two-phase transition region.  
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It is essential for controlling the mechanical properties of steels to 

predict the transformation kinetics and the morphology of 

microstructure by using the numerical simulation. In previous work, 

some mathematical models integrated with numerical technique were 

used to predict material behavior during warm rolling. The numerical 

model provides a systematic way of predicting the mechanical 

properties of steel depending on the microstructure. 

 

The mechanical properties of steels, such as strength, toughness and 

ductility are characterized not only by the composition and volume 

fraction of the constituent phase, but also the microscopic 

configuration of the microstructure that is produced during 

thermomechanical process. Therefore, it is necessary, to for the 

development of new steels, to construct a numerical model that will 

enable the systematic investigation between the microstructure and 

mechanical properties of steels with a high accuracy. Recently, as 

powerful tools predicting for the microstructure evolution during 

solidification, phase transformation and recrystallization in the 

micro- and mesoscale regions, the time-dependent Ginzburg-Landau 

theory and phase-field method has been widely applied [7]. In order 

to predict the mechanical properties of steels and develop the new 

desired steels, it is essential to conduct a coupled numerical 

simulation using the phase-field model. Here a coupled simulation 

by the phase-field method combined with the finite-difference 
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method on the generic grids is developed to model the 

microstructure formation for steel, which are undergoing 

deformation during the phase transition. 

 

 

 

 

1.2 Phase-field model 

 

 

1.2.1 Overview 

 

Phase-field models are widely used for the simulation of grain 

growth in various phase transformations. It is used as a theory and 

computational tool for the prediction of the growth of modeled 

morphologies and complicated microstructure in materials. It was 

first introduced by Fix [8] and Langer [9] and now has been applied 

successfully in solidification and other metallurgical problems. 

 

In the model, the phase-field order parameterφ  is introduced to 

represent the phase, taking on constant values indicative of each of 

the bulk phase and making a transition between values over the 

transition layer corresponds to the interface region which is a finite 
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width. For example, 1φ = , 0φ =  and 0 1φ< <  represent the 

precipitate, matrix and interface respectively.  

 

 

1.2.2 Interface  

 

 

Phase field model is based on a diffuse-interface description. The 

interfaces between domains are identified by a continuous variation 

of the properties in a narrow region (Fig. 1a). In conventional 

modeling techniques for phase transformations and microstructure 

evolution, the interfaces between different domains are considered to 

be infinitely sharp (Fig. 1b), and a multi-domain structure is 

described by the position of the interfacial boundaries [7]. 
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Figure 1.1: (a) Diffuse interface; (b) Sharp interface. 

 

 

1.2.3 Governing equation 

 

 

The total free energy G of the volume is then described in terms of 

the phase-field parameter φ  and its gradients, and the rate at which 

the structure evolves with time is set in context of irreversible 

thermodynamics, and depends on how G  varies with φ . Cahn and 
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Hilliard got the expression of g  as free energy per unit volume of a 

heterogeneous system by considering a multivariate Taylor 

expansion [10-11]. Writing { }0 , ,g c Tφ  as the free energy per unit 

volume of a homogeneous phase of composition c  at 

temperatureT , the expansion of g is [30]: 

0g g=       

2 2
2 2 2 20 0 0 0

2 2 2 2

1 1( ) ( )
2 ( ) 2 ( )

g g g gφ φ φ φ
φ φ φ φ

∂ ∂ ∂ ∂
+ ∇ + ∂ ∇ + + ∂∇ + ∇ +
∂∇ ∂ ∇ ∂∇ ∂ ∇

2 2
2 2 2 20 0 0 0

2 2 2 2

1 1( ) ( )
2 ( ) 2 ( )

g g g gc c c c
c c c c

∂ ∂ ∂ ∂
+ ∇ + ∂ ∇ + + ∂∇ + ∇ +
∂∇ ∂ ∇ ∂∇ ∂ ∇

2 2
2 2 2 20 0 0 0

2 2 2 2

1 1( ) ( )
2 ( ) 2 ( )

g g g gT T T T
T T T T

∂ ∂ ∂ ∂
+ ∇ + ∂ ∇ + + ∂∇ + ∇ +
∂∇ ∂ ∇ ∂∇ ∂ ∇

 

2 2 2
0 0 01

2
g g gc T c T

c T c T
φ φ

φ φ
⎡ ⎤∂ ∂ ∂

+ ∇ ∇ + ∇ ∇ + ∇ ∇ + +⎢ ⎥∂∇ ∂∇ ∂∇ ∂∇ ∂∇ ∂∇⎣ ⎦
(1.1) 

 

Using mathematical method and limiting the Taylor expansion to 

first and second order terms, g is given by integrating over the 

volumeV : 

{ }
2

2
0 , , ( )

2V
G g c T dVεφ φ

⎡ ⎤
= + ∇⎢ ⎥

⎣ ⎦
∫       (1.2) 

where ( )22 2 2
0 0/ 2 ( / ) /g gε φ φ φ= ∂ ∂ ∇ − ∂ ∂ ∂∇ ∂  is the gradient 

energy coefficient which will be discussed later. In actual 
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computations ε  gives an accurate description of interface 

properties such as the energy per unit area and anisotropy of 

interfacial energy. 

 

In austenite and ferrite two-phase region, consider a phase β  

where 1φ =  growing in α  where 0φ =  and with 0 1φ< <  

defining the interface. Thus, assuming 0g  as double-well potential 

shape, which can cover the entire domain of phase-field parameter, 

the expression conducted in previous work is [12]: 

 

{ } { } { } { } { } 2 2
0 0 0

1, , , 1 , (1 )
4

g c T h g c T h g c Tα α β βφ φ φ φ φ
ω

= + − + −⎡ ⎤⎣ ⎦  (1.3) 

 

where 3 2(6 15 10)h φ φ φ= − +  [13]; 0gα  and 0g β  are the free 

energy densities of respective phase; 0cα  and 0cβ  are the solute 

contents of these phase. ω  is a coefficient which can be adjusted to 

fit the desired interfacial energy but has to be positive to be 

consistent with a double-well potential as opposed to one with two 

peaks. 

 

According to the second law of thermodynamics, the driving force 

for microstructure evolution is the possibility to reduce the free 

energy of the system. Thus, the governing equation for phase 
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transition is derived from thermodynamic function of state by means 

of irreversible law of thermodynamics. Free energy is used to derive 

the kinetic equation by requiring that total free energy decreases 

monotonically in time. It can be expressed by: 

 

( , , ) 0G c T
t

δ φ
δ

≤      (1.4) 

 

and an expansion of this equation gives: 

 

, , , , ,,

0
c T T T c cc T

G G c G T
t c t T tφ φ φ φ

δ φ δ δ
δφ δ δ

⎛ ⎞ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (1.5) 

 

In this research, we assume constant composition and isothermal 

conditions so equation (1.5) reduces to following format: 

,,

0
c Tc T

G
t

δ φ
δφ

⎛ ⎞ ∂⎛ ⎞ ≤⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠
     (1.6) 

According to the theory of irreversible thermodynamics that the 

‘flux’ is proportional to the ‘force’ then 

 

, ,c T c T

flux force

GM
t φ
φ δ

δφ
⎛ ⎞∂⎛ ⎞ = −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

      (1.7) 

 

Combining equation (1.6) and (1.7) 
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2

,

0
c T

GMφ
δ
δφ

⎡ ⎤⎛ ⎞
− ≤⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
    (1.8) where 0Mφ ≥ . 

 

Taking all the factors above, we can get 

 

2 2G g
φ

δ ε φ
δφ φ

∂
= − ∇
∂

          (1.9) 

So that 

2 2 { }gM
t φ φ
φ φε φ

φ
⎡ ⎤∂ ∂

= ∇ −⎢ ⎥∂ ∂⎣ ⎦
    (1.10) 

 

Inserting equations (1.2) and (1.3) into (1.10) leads to 

 

M
t φ
φ∂
=

∂
{ ( ) ( )

( ) ( ) ( )
( )

2 2n n
n n

x x y y
ε ε

φ ε φ ε
⎡ ⎤ ⎡ ⎤∂ ∂∂ ∂
∇ + ∇⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

 

( ) ( )
( ) ( )2 2 01 (1 )(1 2 )

2
n gn n

z z
ε

φ ε ε φ φ φ φ
ω φ

⎡ ⎤∂ ∂∂ ⎡ ⎤+ ∇ +∇ ∇ + − − −⎢ ⎥ ⎣ ⎦∂ ∂ ∂ ∂⎣ ⎦
} 

(1.11) 

 

 

1.2.4 Interfacial anisotropy 

 

Classical grain growth theories assume isotropic interface energies 
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and that all interfaces move by the same mechanism. However, it has 

been recognized for many decades that the mechanisms by which 

interfaces move depend to some extent on the interface anisotropy.  

 

The so-called interface anisotropy came into the phase-field model 

by assuming that φ  is orientation-dependent which relative to the 

crystal lattice [14]. 

 

Many theories have been developed to describe the interface 

anisotropy [15]. In this three dimensional simulation, a generic 

expression for interface anisotropy energy of crystals with cubic 

symmetry can be represented in simple format as [16]: 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 2 3( ) [ ( ) ( ) ]x y y z z x x y z x y y z z xn k k n n n n n n k n n n k n n n n n nε ε= + + + + + + +

  (1.12) 

n̂ φ
φ

∇
≡
∇

   (1.13) 

 

where n  is the normal direction to the interface. ε  is the mean 

value of gradient energy coefficient. 0k , 1k , 2k  and 3k  are 

coefficients. 

 

Using Miller indices, it gives: 
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2 2 2x
hn

h k l
=

+ +
  (1.14) 

2 2 2y
kn

h k l
=

+ +
  (1.15) 

2 2 2z
ln

h k l
=

+ +
  (1.16) 

where the normal vector to plane with Miller indices ( )hkl  plane is 

the direction [ ]hkl . The unit normal vector n  has its Cartesian 

coordinates ,x yn n and zn . So equation (1.12) can be represented as: 

 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 32 2 2 2 2 2 2 3 2 2 2 4

( )( ) [1 ( ) ]
( ) ( ) ( )

h k k l l h h k l h k k l l hn k k k
h k l h k l h k l

ε ε + + + +
= + + +

+ + + + + +

  (1.17) 

1k , 2k and 3k  proved by experimental measurement of anisotropy 

surface energy or from microscopic numerical calculation such as 

embedded atom method [16]. For example, there are three sets of 

parameters as listed in Table 1.1. 

 Case A Case B Case C 

1k  -0.863 0.395 0.0 

2k  0.402 0.00144 0.0 

3k  1.8655 0.2555 0.0 

Table 1.1: Different sets of anisotropic coefficients 
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Using phase-field model, with these three sets of anisotropic 

coefficients grain morphology were demonstrated in Fig. 1.2. 

 

 

 

Fig. 1.2: Grain morphology at 5000 time steps under different 

interface anisotropy: (a) Case A, (b) Case B and (c) Case C. [16] 

 

 

1.2.5 Parameter specification 

 

 

In order to simulate the phase field governing equation, first thing 

should specify the parameters in the equation like mobility M , 

gradient energy coefficient ε  and the interfacial fitting parameter 

ω . The general method for determination of phase-field model 

parameter is to manipulate the phase transition to the simplest case 

so that the unknown parameters show their macroscopic meaning. 
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Since in equilibrium state / 0tφ∂ ∂ = , equation (1.10) in 

one-dimensional system where the interface is constant is reduced to: 

 

2
2

2

1 (1 )(1 2 ) 0
2

d
dx
φε φ φ φ

ω
− − − =     (1.18) 

The boundary condition: 

 

1
0

x
x

φ
φ
= = −∞⎧

⎨ = = +∞⎩
    (1.19) 

 

The solution of equation (1.18) is: 

 

1( ) 1 tan
2 2 2

xxφ
ωε

⎡ ⎤= −⎢ ⎥⎣ ⎦
   (1.20) 

 

Then we assume that  

 

2 2λ ωε=    (1.21) 

 

This gives a good approximation of interface thickness because form 

equation (1.20) we can get ( ) 0.90025φ λ =  and ( ) 0.0975φ λ− = . 

λ  is called the half-interface thickness because the interface starts 
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from λ  and ends at λ− . 

 

Multiplying equation (1.18) with /d dxφ  and integrating leads to  

2
2 2 21 1 (1 )

2 4
d
dx
φε φ φ

ω
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

    (1.22) 

 

The interface energy is all the excess energy at the interfacial region, 

which is  

 

2 2
2 2 2 21 1 (1 )

2 4
d d dx
dx dx
φ φσ ε φ φ ε

ω
+∞ +∞

−∞ −∞

⎡ ⎤⎛ ⎞ ⎛ ⎞= + − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫    (1.23) 

 

Using equation (1.20) and equation (1.23) leads to: 

2
12

εσ
ω

=    (1.24) 

 

Equations (1.21) and (1.24) give: 

21.1
3

σ ε
λ

=      (1.25) 

 

Suppose the gradient energy coefficient has the following format: 

 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 2 3( ) ( ) ( )x y y z z x x y z x y y z z xn n n n n n n n n n n n n n n nε ε ε ε ε= + + + + + + +

   (1.26) 
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Bringing equation (1.26) into equation (1.25) and comparing the 

results with equation (1.12), it gives 

 

0ε ε=       (1.27) 

0 1
1

02
k
k

λε =     (1.28) 

0 2
2

02
k
k

λε =      (1.29) 

2
0 3 0 1

3
0 0 02 8

k k
k k k

λ λε = −    (1.30) 

 

where 0 3 /1.1λ λ= . These equations fully determine the 

coefficients of gradient energy coefficient function in terms of the 

coefficients in the anisotropic interface energy function.  

 

So the parameters ε , ω  and Mφ  in the phase-field governing 

equations need to be matched with the interface energyσ , interface 

thickness 2λ  and interface propagation rate ν  [17-18].   

 

The width of the interface, 2λ , is treated as a parameter which is 

adjusted to minimize computational expense or using some other 

criterion such as the resolution of detail in the interface; values of the 
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interfacial energy per unit area, σ , may be available from 

experimental measurements. The mobility Mφ is determined 

experimentally. 

 

Actually, the use of the phase-field model as an accurate 

computation tool for the computation of two or three-dimensional 

solid shapes will require more sophisticated numerical algorithms, 

possibly employing adaptive finite difference techniques. 

 

 

 

1.3 Homogeneous deformation 
 

 

1.3.1 Types of homogeneous deformation 

 

The rolling process can be modelled as a continuous process of 

deformation for long parts of constant cross section, in which a 

reduction of the cross-sectional area is achieved by compression 

between two or more rotation rolls.  

 

Deformation in the rolling process leads to a change in the shape of 

material due to an applied stress such as tensile, compressive, shear, 

torsion, and etc. Figure 3 shows these four principal ways in which a 
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load may be applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: (a) Schematic illustration of how a tensile load produces 

an elongation and positive linear strain. Dashed lines represent the 

shape before deformation; solid lines, after deformation. (b) 

Schematic illustration of how a compressive load produces 
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contraction and a negative linear strain. (c) Schematic representation 

of shear strainγ , where tanγ θ= . (d) Schematic representation of 

torsional deformation (i.e., angle of twistφ ) produced by an applied 

torqueT . 

 

As showed in Figure 4, tension is the magnitude of the pulling force 

exerted by a string, cable, chain or similar object on another object. 

Compress deformation is the result of the subjection of a material to 

compressive stress, resulting in reduction of volume. Shear 

deformation is continuum mechanics refers to a mechanical process 

that causes a deformation of a material substance in which parallel 

internal surfaces slide past one another. It is induced by a shear stress 

in the material. Torsion is the twisting of an object due to an applied 

torque.  

 

 

1.3.2 Effects of homogeneous deformation  

 

In previous work [19], the effect of four principal deformations on 

the grain boundary surface area per unit volume and edge length per 

unit volume is examined. Figs. 1.5, 1.6 and 1.7 show the results of 

different types of deformation.  
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Figure 1.5: Calculation for axisymmetric tension. (a) Area ratio 

versus equivalent strain. (b) Edge ratio versus equivalent strain. [19] 
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Figure 1.6: Calculation for axisymmetric compression. (a) Area ratio 

versus equivalent strain. (b) Edge ratio versus equivalent strain. [19] 
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Figure 1.7: Calculation for simple shear. (a) Area ratio versus 

equivalent strain. (b) Edge ratio versus equivalent strain [19]. 
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Depending on the type of material, size and geometry of the object, 

and the forces applied, various types of deformation may result, like 

elastic deformation and plastic deformation. Elastic deformation is 

reversible. Once the forces are no longer applied, the object returns 

to its original shape. Plastic deformation describes the deformation 

of a material undergoing non-reversible changes of shape in response 

to applied forces. It mainly causes two kinds of microstructure 

evolution. One is change of dislocation density which related to 

driving force for nucleation and growth of recrystallised grains 

formed either dynamically or statically. Another one is the direct 

grain distortion which causes the change of grain interface 

orientation showed in Figure. 1.8. Furthermore, it will change the 

subsequent interface migration pattern and eventually lead to the 

change of grain morphology. 
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Figure 1.8: Schematic diagram shows the interface orientation 

evolution during deformation. The point P and n  are the position 

and its orientation at the origination grain. P′  and in  are those at 

deformed grain. 

 

According to the phase-field model, it is well known that the 

interface anisotropy plays important role in grain microstructure 

evolution. The anisotropy has been considered since the early stage 

development of phase-field models. In equation (1.13), n  is the 

normal direction to the interface which is strongly related to the 

grain morphology. 

 

1.3.3 Simple shear deformation  

 

When a force of any magnitude is applied to a solid body the body 

becomes distorted; that is, some part of the body moves with respect 
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to some neighboring portion as showed in Figure 1.9. As a result of 

this displacement the atomic attractive forces in the body set up 

restoring forces that resist the alteration and tend to restore the body 

to its original shape. The restoring force in a deformed body is 

termed stress. The dimensional change produced by an applied force 

is called strain. 

 

 

 

 

 

 

Figure 1.9: Two-dimensional geometric shear deformation of a 

finitesimal material element 

 

The formula for the shear stress is: 

 

F
A

τ =    (1.31) 

where τ is the shear stress, F is the force applied and A is the 

cross sectional area. The shear strain is defined as the change in 

angle α showed in Figure 1.9. In simple shear deformation, one 

direction remains constant and everything else rotates relative to it 

[20]. 

 

l

lΔ

A

τ

α
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1.3.4 Governing equation 

 

The grain morphology evolution under homogeneous deformation 

has been studied comprehensively [19, 21]. Once the grain structure 

is defined, it is possible to elastically deform it by applying an 

appropriate mathematical deformation matrix to each vertex. 

 

For homogeneous deformation, a vector U  is deformed into V  

following the rule of 

 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

S S S U V
S S S U V
S S S U V

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

   (1.32) 

 

 

where S  is the deformation matrix [11]. The elements of S  take 

different values to represent various types of homogeneous 

deformation. Table 1.2 illustrates the non-zero element of S  matrix 

for four kinds of simple homogeneous deformations. 
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Table 1.2: Volume preserving deformation. The convention used is 

that 11 22 33S S S> >  

 

The grain shape evolution in homogeneous deformation can be 

calculated by application of equation (1.32) to every pixel of the 

grain body. For polyhedron grains, the morphological progressing is 

computable by just considering the conversion of grain vertexes 

during deformation [19]. Figure 1.10 demonstrated the changes of 

shape of two neighbored grains before and after simple deformation 

by vertexes transformation.  

Type 
11S  1S

 

13S  2S

 

22S  23S

 

31S

 

32S

 

33S  

Plane strain 
compression 

1≥  0 0 0 1 0 0 0 
11

1
S

 

Axisymmetric 
compression 33

1
S

 0 0 0
33

1
S

 

0 0 0 1≤  

Axisymmetric 
tension 

1≥  0 0 0
11

1
S

 

0 0 0 
11

1
S

 
Simple shear 1 0 +ve 0 1 0 0 0 1 
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(a)  

(b)  

(c)  

(d)  

(e)  
Figure 1.10: Grain shapes at (a) No-deformed grains; (b) Plain 

strain deformation; (c) Axisymmetric tension; (d) Axisymmetric 

compression; (e) Simple shear. 
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Furthermore, in terms of geometric concerns, equation (1.32) can be 

applied to transform the lattices using finite difference method to 

cope with the phase-field governing equation, which would change 

the grain interface orientation. This enables the integration of phase 

transition simulation with deformation simulation. 

 

 

 

1.4 Aim of the work 

 

 

The phase transformation during homogeneous deformation in steel 

is the fundamental important phenomenon for understanding warm 

rolling because the morphology of grain in steel plays important role 

on mechanical properties of the steel.  

 

The microstructure changes during deformation process, with an 

increase in the grain geometry and grain distortion. The grain 

distortion induced by the elastic deformation also causes the change 

of grain interface orientation, which is relative to the ( )nε  value in 

phase-field model. This will result in completely different grain 

morphology and change the microstructure development during 

deformation while phase transition process in comparison of 

deformation after phase transition process. 
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In the previous studies, the formation and morphology of grain 

growth for phase transition from austenite has been simulated. 

However, to the author’s knowledge, no phase-field model, which 

can treat the phase transformation under deformation, has been 

proposed. In order to predict the microstructure evolution during 

warm rolling, including the consequences on elementary mechanical 

properties, a new phase-field model, which is able to describe the 

phase transformation accompanying with the elastic deformation 

should be developed. Due to the complex inter-connection between 

deformation parameters and grain growth, more studies are still 

required in order to understand material behavior during warm 

rolling processes. 

 

The main purpose of this study is to enable us to perform an 

integrated numerical simulation for the microstructure design of 

phase transition while rolling by coupling the phase-field model with 

homogeneous deformation method. Grain growth in phase transition 

is computed by phase-field model while the grain shape deformation 

is calculated by transforming grid coordinates according to 

homogeneous deformation matrix. 

 

In the following section, we will reformulate the governing equation 

of the phase-field model to simulate the grain growth with 
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homogeneous deformation, including effects of grain geometry, and 

corresponding anisotropy parameters. We then provide detailed 

derivation of numerical methods. Finally, computed results for 

microstructure evolution of grain growth at different times and the 

effect of homogeneous deformation on the grain morphology are 

conducted concerning accuracy of the numerical method. 
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Chapter 2 
 
 
 
Numerical methodology 

 
 
2.1  Overview 
 

In the past, the phase-field simulations showed that it is a general 

and powerful technique for simulating the evolution of relatively 

complex morphologies. Simulation could give important insights 

into the role of specific material or process parameters on the 

microstructure evolution in solidification and the shape and spatial 

distribution of precipitates in phase transformation process. 

 

In the phase-field model, the temporal evolution of the phase-field 

variables, which represent the morphological evolution of the grains 

or domains in the system, is given by a set of coupled partial 

differential equations, one equation for each variable. In phase-field 

simulation, the results were rather qualitative and for real alloys the 

complicate quantitative simulation is difficult. The governing 
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equations in the model contain many phenomenological parameters 

and they are difficult to determine for real alloys. Moreover, massive 

computer resources are required to resolve the evolution of the 

phase-field variable at the interfaces appropriately and, at the same 

time, cover a system with realistic dimensions. 

 

In this section, we give the steps in phase-field model and provide 

some of the numerical results with particular consideration when 

solving partial derivate equations of the second order factor for 

phase-field parameter ( , )x tφ  by the generalized finite difference 

method. 

 

 

2.2  Numerical procedure 
 
 
2.2.1 Lattices properties 
 

Firstly, we initialize the lattices properties. We define suitable lattices 

to represent the space that occupied by material. At the initial 

condition, the lattice distance xΔ is uniform and it must be fine 

enough to make sure there are a few grid points within the interfacial 

region to resolve the interfacial profile of the phase-field variables. 

Therefore, in this simulation the lattice distance is chosen as the one 

quarter of the interface thickness so that four lattices can cover the 
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interface. [22-23] 

 
For the lattice depicted in Figure 2.1, the set of algebraic equation in 

the simulation contains 1 2 3N N N× × equations and the same 

number of unknowns for each phase-field variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Lattices depiction at initial condition. 
 
 
 
2.2.2 Nucleation 
 

The formation of a crystal involves nucleation. Basically, if the 

nucleation occurs on a surface, such as a boundary of the system, or 

on other body, such as a dust particle, it is heterogeneous nucleation. 

If the structure and interatomic spacing of the surface on which 

nucleation takes place approximate those of the crystal, growth on 

1N

2N

3N
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the surface can resemble growth on a normal seed. This is called 

epitaxial growth. If the nucleation occurs in the absence of a surface, 

that is, in the bulk of unit cell, it is homogeneous. 

 

The model of this work focus on growth of single crystal, which 

occurs in the centre of the unit cell. Therefore, the second step is to 

put the nuclei manually to the lattice space according to the classical 

nucleation theory. The initial condition is to put a spherical seed with 

a radius of r at the centre of the logistic frame with phase-field 

order parameter configures to [16]  

 

( , 0) 1
2( , 0) 4

1 exp( 1)
( , 0) 0 4

r t for r x

r t for x r x
r

r t for r x

φ

φ

φ

⎧ = = ≤ Δ
⎪
⎪ = = Δ < < Δ⎨ + −⎪
⎪ = = ≥ Δ⎩

     (2.1) 

 

Then all the lattices should be specified with the initial value of its 

phase-field order parameterφ , solute composition c and temperature 

T . In the processing, the lattice with 0.1 0.9φ< <  is interface, 

0.1φ <  is α  and 0.9φ >  is β  phase. 

 

2.2.3 Time step 

 

The third step is to define the proper time step, which affects the 
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stability of the finite-difference scheme which used for discreting the 

governing equation of phase-field model. At each time step, the 

value of the phase-field variables must be computed for all the grid 

points. In this simulation, for the stability of computation, we can 

directly use the necessary
2

2
xt Δ

Δ ≤ , where xΔ  is the length of the 

lattice. Moreover, smaller lattice spacing involves a smaller time step 

in order to maintain numerical stability. Because of this, large 

computer memory is also required to treat the huge algebraic 

systems of equations with many unknown. 

 

 

2.2.4 Non-dimensionalization 

 

The fourth step is to non-dimensionalize the governing equations for 

phase-field model. For the sake of computational stability, it is 

normal to use dimensional variables in the governing equations so 

that the occurrence of very small or very large numbers is avoided. 

 

The parameters that used in equation (1.11) are non-dimensionalized 

by using [24]: 

/x x LΔ = , 20.3 / ct x DΔ = Δ , 2 /c c mM L RT D Vφ = , 

0 0 / /m cV RT Lε ε= , /c mRT Vω ω=  and 
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0 1 1 0( ) / ( )m cg g g g V RT− = − . 10nmL =  is defined the 

characteristic length. 6 310 m /molcD −=  is the carbon diffusivity in 

steel [27]. -1 -18.31J K molR = ⋅  is the gas constant. 

6 37.18 10 m /molmV −= × is the molar volume of the material. 

o369.8 CcT =  is actually the martensitic transition temperature of 

Fe_0.4wt%C steel. 

 

After non-dimensionalizing the variables, they range roughly 

between 0 and 1 and they are unnormailsed when interpreting the 

outputs of the model. 

 

Furthermore, to make sure that all the parameters are chosen with 

practical ground rather than from pure fiction, the martenstic 

transition of Fe_0.4wt%C steel at o250 C is referenced, MTDATA 

thermodynamics database gives 9 2
0 1.73 10 J/mg = − ×  and 

9 2
1 2.09 10 J/mg = − × . 2

0 800erg/cmk =  is the experimental value 

of interface energy in steel [26]. 

 

2.2.5 Discretization 

 

The fifth step which is one of the most important steps is to discrete 
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the governing equation of phase-field model. In the present work 

finite difference formula is given for partial derivative equations of 

the first and second order factors. In the past, the classic finite 

difference method has been widely used due to the rapid 

development of computer technology and big possibilities that this 

offers when solving large series of equations. This classic method, 

however, continued to be restricted by the enforced use of regular 

meshes. A finite difference discretization technique using uniform 

lattice spacing, and with a central second-order stepping in space and 

forward stepping in time, is most widely used because of its 

simplicity. However, as shown in Figure 2.2, after deformation, the 

rectangular lattices will become non-rectangular, which is not 

available for the classic finite difference method. Thus, we will use 

another finite difference method which will be discussed later. 
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Figure 2.2: (a) Square lattices before deformation. (b) Irregular 

lattices during deformation. (c) Planes distortion during deformation 

in three-dimension. 
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2.3  Finite-Difference Method 
 

 

2.3.1 Overview 

 

A significant number of physical and engineering problems lead to 

differential equations with partial derivatives. Implicit solutions to 

equations of mathematical physics are obtainable only in special 

cases. Therefore these problems are generally solved approximately 

by using some numerical method. In previous work, some 

mathematically models integrated with the finite-element method to 

predict the material behaviour during deformation [28-29]. 

Meanwhile, another method which is one of the most universal and 

an effective method in wide use today for approximately solving 

equations is the method of finite differences. 

 

In classical numerical techniques there are some obstacles. It may be 

difficult to find a simple function over the entire domain and if such 

functions are found they could lead to large and complicated systems 

of equations. However, through finite difference method, the 

continuous domain is replaced by a discrete set of nodes and instead 

of a function of continuous argument, a function of discrete 

arguments is considered. The value of this function is defined at the 

nodes of the grid or at other elements of the grid. The derivatives 
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entering into the differential equations and the boundary conditions 

are approximated by the difference expression, thus the differential 

problem is transformed into a system of linear or non-linear 

algebraic equations. Such system is often called the finite-difference 

scheme. 

 

In the simulation process, the finite difference method for differential 

equation is carried out in the following stages. First is the writing of 

the finite-difference scheme which means the difference 

approximation to the differential equation on a grid. Second is the 

computer solution for difference equations, which is written in the 

form of a high-order system of linear or non-linear algebraic 

equations. 

 

 

2.3.2 General finite-difference method 

 

In finite difference method, there are two main types of scalar 

function of a discrete argument. In the first case, the values of the 

function correspond to the nodes. This is nodal discretisation. In this 

case, grid function hu  is a set of M N×  numbers: 

{ }, 1, , ; 1, ,h h
iju u i M j N= = = . The second possibility is 

cell-valued discretisation. To denote the values of a cell-valued 



43 
 

function, we will use the same procedure as for the mesh of a grid; 

that is h
iju  as it is related to cell ijΩ . For the cell-centred 

discretisation, index i  varies in limits from 1 to 1M −  

and 1, , 1j N= − . Figure 2.3 explains the difference in nodal and 

cell-valued discretisation. 

 

 

 

 

 

 

 

 

 

Figure 2.3: (a) Nodal discretisation; the values of function 

correspond to node. (b) Cell-valued discretisation; the values of the 

function correspond to the cell. 

 

 

Take node discretisation for example and approximate the 

differential operator of the first partial derivative of u with respect 

to /u x∂ ∂ . To construct the difference operator we will use the 

Green formula [25], 

×

,
h
i ju  .b.a

,
h
i ju  
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0
lim l

s

udy
u
x S→

∂
=

∂

∫
      (2.2) 

 

where S  is the area bounded by contour l . In the discrete case, the 

role S  is played by the grid cell ijΩ . Therefore l  is the union of 

sides 1, , 1 ,, , ,ij i j i j i jl l l lξ η ξ η+ +  as showed in Figure 2.4. For 

approximation of the contour integral in the right-hand side of 

equation (2.2), we divide the contour integral into four integral each 

over the corresponding side of quadrangle ijΩ  and for the 

approximate evaluation of each integral, we use the trapezium rule. 

As a result, we obtain the following expression for the difference 

analog of derivative /u x∂ ∂ : 

 

1, 1 , , 1 1, , 1 1, 1, 1 ,( )( ) ( )( )
( )

2
i j i j i j i j i j i j i j i jh

x ij
ij

u u y y u u y y
D u + + + + + + + +− − − − −

=
Ω

   

(2.3) 
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Figure 2.4: Stencil for operator xD  

 

In the example of xD  we can demonstrate the notion stencil of 

difference operators in 2-D. The stencil is a set of nodes that 

participate in the formula for discrete operators. Therefore, the 

stencil of operator xD  in cell ( , )i j  contains 

nodes ( , ), ( 1, ), ( 1, 1), ( , 1)i j i j i j i j+ + + + . 

 

 

2.3.3 Application of finite-difference method 

 

The finite difference method is a technique used principally for 

,( )h
x i jD u

ijΩ

, 1i jlξ +  

1,i jlη +  

,i jlη  

,i jlξ  

×

, 1
h
i ju +

1, 1
h
i ju + +  

1,
h
i ju +  

,
h
i ju  
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solving partial differential equation approximately. The method is 

not synonymous with any physical theory, although its heaviest use 

probably has been in solid and structural mechanics. While there are 

a few features common to all finite difference formulation, there is 

no single universal formulation. Rather, there is considerable variety 

in the implementations of the method, usually motivated by aspects 

of the system of equations being solved. 

 

In the simulation, the direction of each plane in the classical 

phase-field model will be changed because of the homogeneous 

deformation. Figure 2.2 schematically shows how meshes are 

changed during deformation process. Figure 2.5 shows directions of 

each plane from one random point in three dimension and Figure 2.6, 

Figure 2.7 and Figure 2.8 show the lattices evolution in the three 

directions during deformation. 
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Figure 2.5: Direction of each plane from one random point in the 

lattices. 
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Figure 2.5: The irregular lattices in α plane during deformation. 

Nevertheless, considering α plane in three dimensions, based on 

irregular lattices as showed in Figure 2.5 and finite difference 

method, we can get the formula 

 

In α  plane: 

 

, ,
, 1, , 1, 1, , 1, , 1, , 1, , , 1, , 1,

1 ( )( ) ( )( )
2

i j k
i j k i j k i j k i j k i j k i j k i j k i j k

α

φ
φ φ β β φ φ β β

α + − − + − + + −

∂
⎡ ⎤= − − − − −⎣ ⎦∂ Ω

(2.4) 

(i+1,j‐1,k) 

x  

y

z

α
β

n

α

(i,j,k)

(i,j+1,k) 

(i,j‐1,k) 

(i+1,j,k) 

(i+1,j,k)

(i+1,j+1,k) 

(i‐1,j‐1,k) 

(i‐1,j+1,k) 
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2
, , ( 1, 1, ) ( 1, 1, )

( 1, 1, ) ( 1, 1, )2

1 [( )( )
2

i j k i j k i j k
i j k i j k

α

φ φ φ
β β

α α α
+ + − −

− + + −

∂ ∂ ∂
= − −

′∂ Ω ∂ ∂
  

     ( 1, 1, ) ( 1, 1, )
( 1, 1, ) ( 1, 1, )( )( )]i j k i j k
i j k i j k

φ φ
β β

α α
− + + −

+ + − −

∂ ∂
− − −

∂ ∂
    

(2.5) 

 

2
, , ( 1, 1, ) ( 1, 1, )

( 1, 1, ) ( 1, 1, )
1 [( )( )

2
i j k i j k i j k

i j k i j k
α

φ φ φ
β β

α β β β
+ + − −

− + + −

∂ ∂ ∂
= − −

′∂ ∂ Ω ∂ ∂
 

        ( 1, 1, ) ( 1, 1, )
( 1, 1, ) ( 1, 1, )( )( )]i j k i j k
i j k i j k

φ φ
β β

β β
− + + −

+ + − −

∂ ∂
− − −

∂ ∂
  

 (2.6) 

 

where αΩ  is the area of quadrangle which connect points 

( , 1, ), ( , 1, ), ( 1, , )i j k i j k i j k+ − +  and ( 1, , )i j k− . α′Ω  is the area 

of quadrangle which connect points 

( 1, 1, ), ( 1, 1, ), ( 1, 1, )i j k i j k i j k+ + − + + −  and ( 1, 1, )i j k− −  in 

Figure 2.5. 
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Figure 2.6: The irregular lattices in β  plane during deformation. 

 

In β  plane: 

, ,
, 1, , 1, , , 1 , , 1 , , 1 , , 1 , 1, , 1,

1 ( )( ) ( )( )
2

i j k
i j k i j k i j k i j k i j k i j k i j k i j k

β

φ
φ φ γ γ φ φ γ γ

β + − + − + − + −

∂
⎡ ⎤= − − − − −⎣ ⎦∂ Ω

(2.7) 

 

2
, , ( , 1, 1) ( , 1, 1)

( , 1, 1) ( , 1, 1)2

1 [( )( )
2

i j k i j k i j k
i j k i j k

β

φ φ φ
γ γ

β β β
+ + − −

+ − − +

∂ ∂ ∂
= − −

′∂ Ω ∂ ∂
 

× ×

× ×
x

y

β

γ

n

( , 1, 1)i j k+ +

( , , 1)i j k +

( , 1, 1)i j k− +
( , 1, )i j k−

( , 1, 1)i j k− −

( , , 1)i j k −

( , 1, 1)i j k+ −
( , 1, )i j k+

( , , )i j k

β
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( , 1, 1) ( , 1, 1)
( , 1, 1) ( , 1, 1)( )( )]i j k i j k
i j k i j k

φ φ
α α

β β
+ − − +

+ + − −

∂ ∂
+ − −

∂ ∂
  

 (2.8) 

 

2
, , ( , 1, 1) ( , 1, 1)

( , 1, 1) ( , 1, 1)
1 [( )( )

2
i j k i j k i j k

i j k i j k
β

φ φ φ
β β

β γ β β
+ + − −

+ − − +

∂ ∂ ∂
= − −

′∂ ∂ Ω ∂ ∂
 

( , 1, 1) ( , 1, 1)
( , 1, 1) ( , 1, 1)( )( )]i j k i j k
i j k i j k

φ φ
β β

β β
+ − − +

+ + − −

∂ ∂
− − −

∂ ∂
      

(2.9) 

 

where βΩ  is the area of quadrangle which connect points 

( , 1, ), ( , 1, ), ( , , 1)i j k i j k i j k+ − +  and ( , , 1)i j k − . β′Ω  is the area 

of quadrangle which connect points 

( , 1, 1), ( , 1, 1), ( , 1, 1)i j k i j k i j k+ + − − + −  and ( , 1, 1)i j k− +  in 

Figure 2.6 

 

Figure 2.7: The irregular lattices in γ  plane during deformation. 
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In γ  plane: 

, ,
, , 1 , , 1 1, , 1, , 1, , 1, , , , 1 , , 1

1 ( )( ) ( )( )
2

i j k
i j k i j k i j k i j k i j k i j k i j k i j k

γ

φ
φ φ α α φ φ α α

γ + − − + − + + −

∂
⎡ ⎤= − − + − −⎣ ⎦∂ Ω

 

(2.10) 

 

2
, , ( 1, , 1) ( 1, , 1)

( 1, , 1) ( 1, , 1)2

1 [( )( )
2

i j k i j k i j k
i j k i j k

γ

φ φ φ
α α

γ γ γ
+ + − −

− + + −

∂ ∂ ∂
= − −

′∂ Ω ∂ ∂
 

( 1, , 1) ( 1, , 1)
( 1, , 1) ( 1, , 1)( )( )]i j k i j k
i j k i j k

φ φ
α α

γ γ
− + + −

+ + − −

∂ ∂
+ − −

∂ ∂
  

(2.11) 

 

 

 

2
, , ( 1, , 1) ( 1, , 1)

( 1, , 1) ( 1, , 1)
1 [( )( )

2
i j k i j k i j k

i j k i j k
γ

φ φ φ
γ γ

α γ γ γ
+ + − −

− + + −

∂ ∂ ∂
= − −

′∂ ∂ Ω ∂ ∂
 

( 1, , 1) ( 1, , 1)
( 1, , 1) ( 1, , 1)( )( )]i j k i j k
i j k i j k

φ φ
γ γ

γ γ
− + + −

+ + − −

∂ ∂
− − −

∂ ∂
 

(2.12) 

 

where γΩ  is the area of quadrangle which connect points 

( , , 1), ( , , 1), ( 1, , )i j k i j k i j k+ − −  and ( 1, , )i j k+ . γ′Ω  is the area 

of quadrangle which connect points 

( 1, , 1), ( 1, , 1), ( 1, , 1)i j k i j k i j k+ + + − − −  and ( 1, , 1)i j k− +  in 
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Figure 2.6 

 

These formulas are for cell-centred discretisation and they refer to a 

group of established nodes related to one, which is denoted as central 

node. For calculating the value of one point, we have to use 21 

neighbouring points. Actually, there is no best method way for 

obtaining approximating difference formulae, and as many different 

methods as possible will be tested. The only requirement is that the 

formula, having been obtained, must pass certain test of accuracy, 

consistency, stability and convergence. 

 

During deformation, each quadrangle will probably have different 

shape. For the purpose of the program we define a set of parameters 

for viewing arbitrary planes through deformation, which is easy to 

visualize for the user. Therefore, we have to use coordinate 

transformation to make all the phase-field governing equation of 

each point can be explained in one coordinate. 

 

 

 

2.4  Coordinate transformation 

 

 

2.4.1 General coordinate transformation  
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The need for the use of more than one coordinate system comes from 

the fact that many different physical phenomena are easier calculated 

or understood in a system that is appropriate for the phenomenon. 

Frequently, it is quite necessary to transform from one coordinate 

system to another. 

 

For the definition of a coordinate system in three-dimensional space, 

one has only to specify the direction of one of the axes, and the 

orientation of one of the other axes in the plane perpendicular to this 

direction. The third axis follows automatically in order to complete a 

right-handed orthogonal set. As showed in Figure 2.5, α  means the 

direction along the irregular lattices. β  is perpendicular to α  and 

n  is the normal direction of α plane which means a random plane 

in the model. The coordinate systems and transformations used in 

this simulation are Cartesian coordinates system. 

 

In Cartesian coordinate system, a position vector M  in a 

three-dimensional space can be represented in vector form as 

 

m m m m m m m mr O M x i y j z k= = + +    (2.13) 

 

where ( , , )m m mi j k are the unit vectors of coordinate axes, and by the 
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column matrix it can written as: 

 

 

 

 

m

m m

m

x
r y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

    (2.14) 

 

 

The subscript m indicates that the position vector is represented in 

coordinate system ( , , )m m m mS x y z . There are many ways to define an 

arbitrary rotation, scaling and translation of one coordinate frame 

into another. Consider two coordinate systems ( , , )m m m mS x y z  and 

( , , )n n n nS x y z  as an example. Point M is represented in coordinate 

system mS by the position vector as: 

 

[ ]1 T
m m m mr x y z=    (2.15) 

 

In coordinate system nS the same point can be determined by the 

position vector as: 

[ ]1 T
n n n nr x y z=   (2.16) 
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with the matrix equation: 

 

n nm mr M r=   (2.17) 

 

Matrix nmM  is represented by: 

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

nm

a a a a
a a a a

M
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0 1

n m n m n m n m n

n m n m n m n m n

n m n m n m n m n

i i i j i k O O i

j i j j j k O O j

k i k j k k O O k

⎡ ⎤⋅ ⋅ ⋅ ⋅
⎢ ⎥

⋅ ⋅ ⋅ ⋅⎢ ⎥= ⎢ ⎥⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

( )

( )

( )

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )

cos( , ) cos( , ) cos( , )
0 0 0 1

m

m

m

O
n m n m n m n

O
n m n m n m n

O
n m n m n m n

x x x y x z x

y x y y y z y

z x z y z z z

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      

(2.18) 

 

Here, ( , , )n n ni j k  are the unit vectors of the axes of the new 

coordinate system; ( , , )m m mi j k  are the unit vectors of the axes of 

the original coordinate system; nO  and mO  are the origins of the 
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new and original coordinate systems; subscript nm in the 

designation nmM indicates that the coordinate transformation is 

performed from mS to nS . The determination of elements 

( 1, 2,3,4; 1,2,3)lka k l= =  of matrix nmM  is based on the 

following rules. Firstly elements of the 3 3×  submatrix 

 

11 12 13

21 22 23

31 32 33

nm

a a a
L a a a

a a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   (2.19) 

 

represents the direction cosines of the original unit vectors 

( , , )m m mi j k  in the new coordinate system nS . The number l  

indicates the original coordinate axis and the number k indicates the 

new coordinate axis. Axes , ,x y z  are given number 1, 2 and 3, 

respectively. Elements 14 14,a a  and 34a  represent the new 

coordinates ( ) ( ) ( ), ,m m mO O O
n n nx y z  of the original mO . 

 

 

 

2.4.2 Application of coordinate transformation 

 

Using the coordinate transformation rule discussed above and taking 
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α  plane as an example, we can get: 

 

1, , , , 1, , , , 1, , , ,
2

1, , , ,

( ) ( ) ( )i j k i j k i j k i j k i j k i j k

i j k i j k

x x x y x y z z z
α

α α
+ + +

+

− + − + −
=

−
   (2.20) 

2

1, , , ,i j k i j k

nαβ
β β+

×
=

−
   (2.21) 

 

According the equations (2.17) and (2.18), the relationships between 

these transformations are found by directly comparison of the 

transformation matrix elements: 

 

x y z

x y z

x n y n z n

i i i j i k x
j i j j j k y

n k i k j k k z

α α α

β β β

α
β

⎛ ⎞∂ ⋅ ⋅ ⋅ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ = ⋅ ⋅ ⋅ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⋅ ⋅ ⋅ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.22) 

 

where ,x yi i  and zi  are the unit vectors of the XYZ  system, and 

,i iα β  and ni  are the unit vectors of the nαβ  system. 

 

Furthermore, in XYZ  system, the first order partial derivatives 

were discretized by using  
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n
x x x x

n
y y y y

n
nz z z z

φ α β φ
α

φ α β φ
β
φφ α β

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟
∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂

⎜ ⎟ ⎜ ⎟⎜ ⎟
∂∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠

    (2.23) 

 

0
n
φ∂
=

∂
   (2.24) 

 

According to the nodes in the cell we want to get discretation value 

and the lattices geometry, using equations discussed above, we can 

derive the formula for operator , ,i j k

x
φ∂
∂

, , ,i j k

y
φ∂
∂

, , ,i j k

z
φ∂
∂

, 
2

, ,
2

i j k

x
φ∂
∂

, 

2
, ,
2

i j k

y
φ∂
∂

, 
2

, ,
2

i j k

z
φ∂
∂

, 
2

, ,i j k

xy
φ∂
∂

, 
2

, ,i j k

yz
φ∂
∂

 and 
2

, ,i j k

xz
φ∂
∂

 in the similar 

way by using the 21-neighbor points and geometry of the cell in 

three dimensions. 

 

 

2.5  Conclusion 

 

All spatial derivatives in phase-field governing equation were 

discretized using finite difference formulas that we generalized 

above. ( , , )i j k  denotes the position of the node along the ,x y  

and z  axes, respectively. The second order partial derivatives were 
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discretized using the nine-point formula. Time stepping was done 

using a first-order Euler scheme.  

 

 

From the above discussion, it may be seen that using finite difference 

method and coordinate transformation method on phase-field model 

depends on the following factors: 

a. The position of nodes. This underlines the great importance of 

the selection of nodes of the lattices. The selection or placement 

of the nodes has a great influence on the results. Normally, when 

selecting the nodes surrounding the central node, we selected 

those closest to the central one in the Cartesian coordinates. 

b. The relative coordinate of the lattice spacing. This is more 

important in heterogeneous deformation because the neighbour 

lattice maybe undergo deformation in different directions. 
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Chapter 3 
 
 
Simulation and discussion 
 

 

 

 

3.1 Overview 
 

Ideally, in an attempt to reduce experimental costs improve the 

understanding of the mechanism, one would like to make a 

prediction of a new material’s behaviour by numerical simulation, 

with the primary goal being to accelerate trial and error experimental 

testing. Simulation raises the possibility that modern numerical 

methods can play a significant role in analysis of microstructure 

evolution. 

 

 

 

3.2  Simulation 
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3.2.1 System diagram 

 

According to the numerical procedures, which were discussed in 

chapter 2, we can get the results of the simulation. As described in 

chapter 1, there are four main types of homogeneous deformations. 

And in this numerical simulation, we combined phase-field model 

with simple shear deformation together. According to Table 1.2 

which shows different value of S  matrix, during simple shear 

deformation, 11 22 33 1S S S= = = , 13S  is the shear value, and all the 

other elements of S  are zero. Furthermore, for simplicity and to 

ensure mechanical equilibrium, we assume uniform density and 

temperature throughout the system and that there is no mass and 

temperature diffusion in the phase. 

 

As discussed in chapter 2, Figure 3.1 is the system diagram. 
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Figure 3.1: System diagram of whole simulation 
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3.2.2  Parameters of simulation 

 

The simulations were performed on a cubic grid of size 

1 2 3 160 160 120N N N× × = × ×  with initial constant grid spacing. 

Simulations were started with a small spherical seed in the corner of 

the cubic. After deformation, lattices geometry such as grid spacing 

is not constant anymore. 

 

The phase-field governing equation contains many 

phenomenological parameters, which are difficult to determine for 

real alloys. In this simulation, the thermodynamic data for the 

martenstic transition of Fe_0.4wt%C steel at o250 C  is used. In 

metallic materials the thickness of interface is about 3 to 5 atomic 

distances which is about 1 nm but in this model the half thickness of 

the interface is chosen as 14.3nm to accelerate the simulation 

without losing much details of the grain morphology. The lattice 

distance was chosen as 7.15nmxΔ = so that there are four grids 

across the interfaces. According to the MTDATA thermodynamic 

database, bulk free energy 9 2
0 1.73 10 J/mg = − ×  and 

9 2
1 2.09 10 J/mg = − × . The interface energy is 2800erg/cm [26].  

 

Three sets of anisotropy coefficients are applied in the simulation, as 

list in Table 3.1. Figure 3.1 demonstrates the three different grain 
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morphology without deformation using different interface anisotropy 

in Table 3.1. 

 

 Case A Case B Case C 

1k  −0.863 0.402 0.0 

2k   0.395 0.00144 0.0 

3k   0.0238 0.00066 0.0 

 

Table 3.1: Different sets of anisotropic coefficients 
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Figure 3.1 Grain morphology at 5000 time steps under different 

interface anisotropy list in Table 3.1. (a) Case A, (b) Case B and (c) 

Case C. 

 

 

 

 
  

.a

.b .c
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3.2.3 Results 

 

Figure 3.2, 3.4 and 3.6 show the microstructure evolution in three 

different sets of anisotropy parameters. Three types of different grain 

growth under each anisotropic parameter are simulated. One is 

normal grain growth without deformation. The second is simple 

shear deformation along the y -axis after grain growth. The third is 

the grain growth while undergoing homogeneous deformation along 

the y -axis. 

 

Figure 3.3, 3.5 and 3.7 show microstructure evolution in different 

time steps while undergoing simple shear deformation using three 

different anisotropy parameters. 
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Case A (Dendrite) 

Without deformation; time steps=12000 

 

Deformation after grain growth; time steps=12000 

 
Deformation during grain growth; time steps=12000 

 

Figure 3.2: Grain morphology at 100Mφ =  computation using 

anisotropy coefficient in Case A: (a) No simple shear deformation; (b) 

With simple shear deformation after grain growth for 12000 time 

.a

.b

.c
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steps; (c) After 12000 time steps with simple shear deformation in 

every 6000 time steps while grain growth. 

 

 

 

 

Case A (Dendrite) 

Time steps=6000 Time steps=8000 

  

Time steps=10000 Time steps=12000 

 

z  
x

y



70 
 

Time steps=14000 Time steps=16000 

 

 

 

Figure 3.3: Case A: Grain morphology at 100Mφ =  computation: 

Microstructure evolution during simple shear deformation in 

different time steps. 
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Case B (Cubic) 

Without deformation 

 

Deformation after grain 

growth; 

 time steps=18000 

Deformation during grain 

growth;  

time steps=18000 

  

Figure 3.4: Grain morphology at 100Mφ =  computation using 
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anisotropy coefficient in Case B: (a) No simple shear deformation; (b) 

With simple shear deformation after grain growth for 18000 time 

steps; (c) After 18000 time steps with simple shear deformation in 

every 6000 time steps while grain growth. 

 

 

 

 

 

 

 

 

 

 

Case B (Cubic) 

Time steps=4000 Time steps=6000 
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Time steps=10000 Time steps=12000 

  

Time steps=16000 Time steps=18000 

 
 

Figure 3.5: Case B: Grain morphology at 100Mφ =  computation: 

Microstructure evolution during simple shear deformation in 

different time steps. 
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Case C (Isotropy) 

Without deformation 

 

Deformation after grain growth; 

time steps=12000 

Deformation during grain 

growth; time steps=18000 

  

Figure 3.6: Grain morphology at 100Mφ =  computation using 

anisotropy coefficient in Case C: (a) No simple shear deformation; (b) 

With simple shear deformation after grain growth for 18000 time 
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steps; (c) After 18000 time steps with simple shear deformation in 

every 6000 time steps while grain growth. 

 

 

 

 

Case C (Isotropy) 

Time steps=4000 Time steps=6000 

  

Time steps=10000 Time steps=12000 
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Time steps=16000 Time steps=18000 

 
 

Figure 3.7: Case C: Grain morphology at 100Mφ =  computation: 

Microstructure evolution during simple shear deformation in 

different time steps. 

 

 

 

 

3.3  Discussion 

 

 

As demonstrated earlier, three different processing bring out three 

different microstructure evolutions and the morphology of the 

growing grain presents here to minimize the free energy of the whole 

system. In addition, after a particular time step, the new 
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microstructure disappears step by step which because of the effect of 

grain growth rate is more effective than the effect of the change in 

normal interface vector. 

 

In solid state, the interactions between atoms in crystal are stronger. 

Thus the atoms are able to move only in vibrations of extremely low 

amplitude about fixed positions relative to one another. As a result, 

solids have rigidity, fixed shape, and mechanical strength. 

Furthermore, when a force of any magnitude is applied to a solid 

body the body becomes distorted; that is, some part of the body 

moves with respect to some neighbouring portion. As a result of this 

displacement the atomic attractive forces in the body set up restoring 

forces that resist the alteration and tend to restore the body to its 

original shape. The restoring force in a deformed body is termed 

stress and has the units of force per area. The dimensional change 

produced by an applied force is called strain. 

 

One effect of simple shear deformation on microstructure evolution 

is the direct grain distortion which will change the grain size and 

grain size distribution in phase transformation. Subsequently, this 

will change the grain interface orientation and normal vector n  as 

showed in Figure 3.8.  
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Figure 3.8: schematic diagram of interface orientation evolution 

during deformation. 

 

The normal direction of grain interface n  is related with the 

anisotropy surface energy in equation (1.12). Furthermore, it will 

change the grain interface migration pattern and eventually lead to 

the change of grain morphology compared with deformation after 

phase transformation. 

 

To more specifically explain this phenomenon, we assuming an 

operator G to represent the grain growth in Cartesian coordinates: 

 

( ) ( ) ( ) ( )x y zG n G n G n G n⎡ ⎤= ⎣ ⎦   (3.1) 

 

Grain growth in phase transition while undergoing deformation can 

be described: 

( )
t

total ij i
t o

G S G n
=

= ⋅∑   (3.2) 

n n
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where iG  means grain growth matrix after i th deformation. 

 

Meanwhile, grain growth in phase transition before deformation: 

[ ( ) ]
t

total ij
t o

G G n S
=

′ = ∑   (3.3) 

 

Because the normal unit vector of interface n  is related to the 

deformation operator ijS , so 

total totalG G′≠  (3.4) 

when the anisotropic effect of interface is ignored, total totalG G′= . 

Therefore, from the equations discussed above, it is reasonable that 

the microstructure obtain by phase transition during deformation can 

been completely different from that deformation after phase 

transiton. 

 

Figure 3.9 describes the whole change of lattices in three different 

situations. One is normal grain growth without deformation. Second 

one is simple shear deformation along the y -axis after grain growth. 

The last one is grain growth while undergoing homogeneous 

deformation along the y -axis. Figure 3.10, 3.11 and 3.12 show the 

cross-section of grain growth in phase transition during deformation 

and after deformation along three axes.  



80 
 

 

 

       
b  

 

 

c  

 

Figure 3.9: Distortion of the whole unit cell. (a) No deformation. (b) 

Deformation during grain growth. (c) Deformation after grain 

growth. 
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a .    

b .    

c .    

Figure 3.10: Cross-section in z-direction of grain: (a) no deformation; 

(b) Simple shear deformation while grain growth; (c) simple shear 

deformation after grain growth 

x

y
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a .  

b .  

c .  

Figure 3.11: Cross-section in y-direction of grain: (a) simple shear 

deformation while grain growth; (b) simple shear deformation after 

grain growth. 

x

z
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Figure 3.12: Cross-section in x-direction of grain: (a) No 

deformation; (b) Simple shear deformation while grain growth; (c) 

Simple shear deformation after grain growth. 

 

y

z
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In simple shear deformation, the shearing force is applied to a body 

the amount of slide or shear between two layers unit distance apart is 

shear strain. Hook’s law states that stress is proportional to strain 

within the elastic limit, that is, within the range of forces where the 

body will recover its original shape when the forces are removed. 

Furthermore, if a material is strained in a particular direction the 

crystallites will usually be elongated in the same direction. In Figure 

3.9, the simple shear deformation is in y  axis which changes the 

position of each points in y  direction. From the lattice sections of 

each direction in Figure 3.10, 3.11 and 3.12, lattices distorted in xy  

plane and elongated in xz plane. 

 

In xy  plane, meshed are distorted because of the simple shear 

deformation along y axis. The normal vector of the interface is 

changed which result the grain growth to different direction. From 

Figure 3.13, after simple shear deformation, grain growth according 

to the new vector n′  which result the new microstructure. 
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       a.  

  

b.  

 

Figure 3.13: Normal vector of interface. (a) No deformation. (b) 

During deformation. n  means normal vector of the interface before 

deformation. n′  represents the new normal vector after 

deformation. 

 

In xz  plane, there is no as big difference of microstructure as in 

yz  plane. The distances of the lattice elongate in x  direction and 

shorten in z  direction. This results diffusion of phase-field 

parameter φ  in z  direction a little bit faster than it in deformation 

after grain growth. Therefore, the grain growth is faster in z  

direction which also showed in Figure 3.12. 

 

n

n′
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In yz  plane, there is no lattice change which result the same 

microstructure evolution. 

 

In conclusion, the strain will usually tend to partially orient the 

distorted crystallites. The glide planes and glide directions in 

crystallites tend to become parallel to the deformation direction. In 

material, such preferential orientation is called texture. Texture will 

often persist through subsequent recrystallization. In this simulation, 

after once deformation, the grain growth direction changes and 

persists in new direction before second deformation.  

 

In cubic and isotropic situation, there are no big differences in 

microstructure evolution because their anisotropy of interface energy 

is small. 

 

Actually, in most of the solid materials, the individual crystals are 

rather small and materials contain many of these crystallites. Each of 

these crystallites is misoriented with respect to its neighbours to a 

greater or lesser degree. Often these crystallites are called grains, and 

the regions between crystallites are called grain boundary, where 

nucleation has more chances to happen than inside the grains. Figure 

3.14 illustrates how nucleation happens in the grain boundary [20]. 

From the simulation results, deformation happens during phase 

transition makes different area of grain boundary and this changes 
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the density of sites for nucleation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Schematic of nucleation at grain boundary 

 

Solid-solid growth during deformation process, a desired orientation 

can be obtained by controlling the deformation value and direction 

so that the single crystal region can bear the desired spatial relation 

to the axes of the specimen. Therefore, a new microstructure can be 

obtained to make new physical properties.  
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3.4  Conclusion 

 

The physical properties of all technologically interesting materials 

are strongly dependent upon their chemical composition as well as 

their microstructure. The most efficient way of obtaining the 

desirable microstructure is via accurate control of phase 

transformation in solids. Phase transition requires two processes: 

nucleation and growth. Nucleation involves the formation of very 

small particles. During growth, the nuclei grow in size at the expense 

of the surrounding material. 

 

The structure resulting from a solid state phase transformation 

depends on the crystallographic relationship between the lattices of 

the initial and product phases, on the physical properties of the 

separate phases, and on the rate of the transformation. There are 

many phase transformations which are not limited by diffusion, but 

result simply from some form of mechanical instability of the crystal 

lattices, and may require some form of structural transition from one 

crystallographic lattice to another. Thus, a homogeneous movement 

of many atoms may results in a change in crystalline structure by 

introducing an entirely new lattices and corresponding unit cell. 

During the movements the atoms typically maintain their relative 

relationships which are showed in the results. 
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According the results of the simulation, a new microstructure is 

obtained which can give us new physical properties. There is no 

mass diffusion in this model. Thus, in the further work, basic on this 

model we can add composition diffusion and simulation more crystal 

in one system which related to the texture. 
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Chapter 4 
 
 
Conclusion  
 

 

 

The effect of various deformations in phase transition is important 

because it can change the way of grain growth. The aim of this work 

was to simulate the effect of homogeneous deformation in phase 

transition. First we described the problem of calculating the 

microstructure evolution for homogeneous deformation and then 

provided a detailed numerical method and methodology for solving 

the three-dimension phase-field model to simulate such 

microstructure evolution in phase transition while warm rolling. 

 

From this work, we know homogeneous deformation in phase 

transition will cause not only the change of lattice geometry used in 

phase-field model but also cause the grain distortion which related 

with the interface migration pattern. Subsequently, the 

microstructure that obtained by phase transition during warm rolling 

can be completely different from that rolling after phase transition. 
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Metal with new microstructure and therefore new properties can be 

obtained by this processing. 

 

Meanwhile, in the process of simulation, phase-field model 

combined finite difference method, viewed solely as a framework 

motivated by the physics of deformation in the microstructure, 

provides the finite difference analyst benefit as compared to the more 

common model. The simulation captures the underlying physics of 

metal deformation to a greater degree. 

 

The whole work provides a method to simulate phase-field model in 

irregular lattice using general finite difference method. And the 

results of the simulation show that the microstructure evolution of 

deformation while phase transition could be different compared with 

deformation after phase transition. 
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Appendix A 
 
 
This is the documentation for the program in this work 
 
 
 

Program 
 
 
TX_PHASE-FIELD MODEL_HOMOGENEOUS DEFORMATION 
 
 
 
 

1. Provenance 

2. Purpose 

3. Sepecification 

4. Description 

5. References 

6. Parameter 

7. Error indicatiors 

8. Accuracy estimate 

9. Further comments 

10. Example 

11. Auxiliary routines 

12. Keywords 
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1. Provenance of Source code 

Tan Xu, Rongshan Qin and H.K.D.H. Bhadeshia 

Graduate Institute of Ferrous Technology (GIFT) 

Pohang University of Science and Technology 

Pohang, Kyngbuk, Republic of Korea 

tanx03@postech.ac.kr 

 

 

 

2. Purpose 

To simulate microstructure evolution in warm rolling by 

combining phase-field model with homogeneous deformation. 

Furthermore, compared the results with microstructure in 

homogeneous deformation after homogeneous deformation. 

 

3. Specification 

Language: C++ 

Product form: Executables and complete source code 

 

4. Description 

A method to simulate materials rolling at two-phase region has 

been developed. The characteristics of this processing is that the 
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phase transition and hence the crystal growth is taking place 

when system undergoing deformation. The microstructure 

evolution is handled by phase-field model. Various deformations 

are accommodated by grid transformations. The methodology 

and mathematics for achieving this simulation are presented in 

details. Numerical study demonstrates convincing results. It is 

found that the deformation-induced interface disruption plays the 

dominant role in growth of crystals with strong interface 

anisotropy. 

 

The program runs best on Microsoft Visual C++ compiler 

All the files are compressed into a file called 

Microstructure_warm rolling. tar 
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The .tar file contains the following files 

TX_CalcBasicFunctions.h 

TX_CalcIO.H 

TX_CalcParameters.h 

TX_CalcPhaseField.h 

TX_Deformation.h 

Header files for 

variables 

TX_CalcMain.cpp Main module. 

TX_CalcPhaseField.cpp 

TX_Deformation.cpp 

Calculation about the 

phase-field parameters. 

Degree of the the type of 

deformation, and other 

values needed are 

selected here 

TX_parameters.dat File of the input 

parameter 

Simq.dat 

Simgrid.dat 

Output files which 

contain the calculation 

results and shape of unit 

cell. File names are 

determined by the grain 

generating degree. 

TX_PD.exe Executive file 
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5. Reference 

Zhu, Q., Sellars, C. M. and Bhadeshia, H. K. D. H. : Quantitative 

metallography of deformed grains, Material Science and Technology, 

Vol. 23 (2007) pp. 757-766 

 

R.S. Qin and H.K.D.H. Bhadeshia. Phase-field model study of the 
effect of interface anisotropy on the crystal morphological evolution of 
cubic metals. Acta Mater 57 (2009), p. 2210. 

 

Jae-Yong, C., Rongshan, Q. and Bhadeshia, H. K. D. H. : Topology of 

the deformation of a non-uniform grain structure, submitted to 

Material Science and Technology. 

 

R.S. Qin and E.R. Wallach. A phase-field model coupled with a 
thermodynamic database. Acta Mater. 51 (2003), p. 6199. 

 

 

6. Parameters 

 

 

Input parameters: 

The input variables are determine before compile 

total_grid_x/y/z : size of unit cell 

save_time_steps: time for output files 

   time_to_deformation: deformation time 

deform_Case: deformation mode 
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deformation_value: determine the deformation matrix 

 

Output parameters 

Vertex coordinate are listed in simgrid.dat. array of three 

numbers which represent ,x y  and z respectively are repeated. 

 

The calculation results about phase-field parameter φ are printed 

in simq.dat files. 

 

 

7. Error indicators 

None 

 

 

8. Accuracy 

No information 

9. Further comments 

Composition diffusion will be added into the model 

 

10. Example 

a. Set value of unit cell size, deform_case deformation_value 

and time_to_deformation 
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total_grid_x   160 

total_grid_y   160 

total_grid_z   120 

total_phase    2 

total_solute  0 

total_time_steps 500001 

save_time_span  2000 

time_to_deformation     6000 

deform_Case             4 

deformation_value       0.5 

grid_distance  7.15E-9 

half_interface_thick    1.43E-8 

molar_volume  7.18E-6 

interface_energy_0 0.8 

phase_mobility_0 100.0 

bulk_free_energy_0      -1.730326E+9 

bulk_free_energy_1      -2.088922E+9 

b. Compile 

 

c. Run “TX_PD.exe” 

 

d. “simgrid.dat” and “smq.dat” are generated. 
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Simgrid.dat 

60 60 60 0 0.715 1.43 2.145 2.86 3.575 4.29 5.005 5.72 6.435 

7.15 7.865 8.58 9.295 10.01 10.725 11.44 12.155 12.87 13.585 

14.3 15.015 15.73 16.445 17.16 17.875 18.59 19.305 20.02 

20.735 21.45 22.165 22.88 23.595 24.31 25.025 25.74 26.455 

27.17 27.885 28.6 29.315 30.03 30.745 31.46 32.175 32.89 

33.605 34.32 35.035 35.75 36.465 37.18 37.895 38.61 39.325 

40.04 40.755 41.47 42.185 0 0.715 1.43 2.145 2.86 3.575 4.29 

5.005 5.72 6.435 7.15 7.865 8.58 9.295 10.01 10.725 11.44 

12.155… 

 

 

Simq.dat 

…0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 3.90974e-007 1.97597e-006 6.43415e-006 

1.68609e-005 3.69788e-005 7.07819e-005 0.000120842 

0.000185742 0.000258119 0.000325138 0.000372107 

0.000387462 0.000367301 0.000316959 0.000248791 

0.000177366 0.000114671 6.70536e-005 3.52325e-005 

1.63767e-005 6.50738e-006 2.09587e-006 4.50915e-007 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0… 
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11. Auxiliary rountines 

None 

 

12. Keywords 

Phase-field parameter, homogeneous deformation 
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