Introduction to ab initio calculation and k-carbide

07. Oct. 2010
Pt-group meeting presentation
Seung-Woo Seo

Table of Contents

- First-principles calculation
- Strong point of First principles calculation
- Limitation
- K-carbide

First-principles (ab initio) caculation

 $\hat{H}\Psi = E\Psi$

$\hat{H}\Psi=E\Psi$ Schrödinger Equation

Ground state energy for any given compound or solid

Variational principle

$$E = \min_{\phi} < \phi |\hat{H}|\phi >, \int_{-\infty}^{\infty} dx |\phi(x)|^2 = 1$$

$\hat{H}\Psi=E\Psi$ Schrödinger Equation

Ground state energy for any given compound or solid

$$\{\sum_{i=1}^{n} -\frac{1}{2}\nabla_{i}^{2} + \sum_{i=1}^{n} v_{ex}(r_{i}) + \sum_{i=1}^{n} v_{ext}(r_{i})\}\Psi(r_{1}, r_{2}, \dots, r_{n})$$

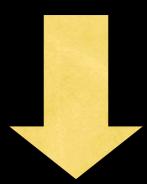
$$= E\Psi(r_{1}, r_{2}, \dots, r_{n})$$

Where,
$$e^2 = \hbar = m_e = 1$$

Density Functional Theory (DFT)

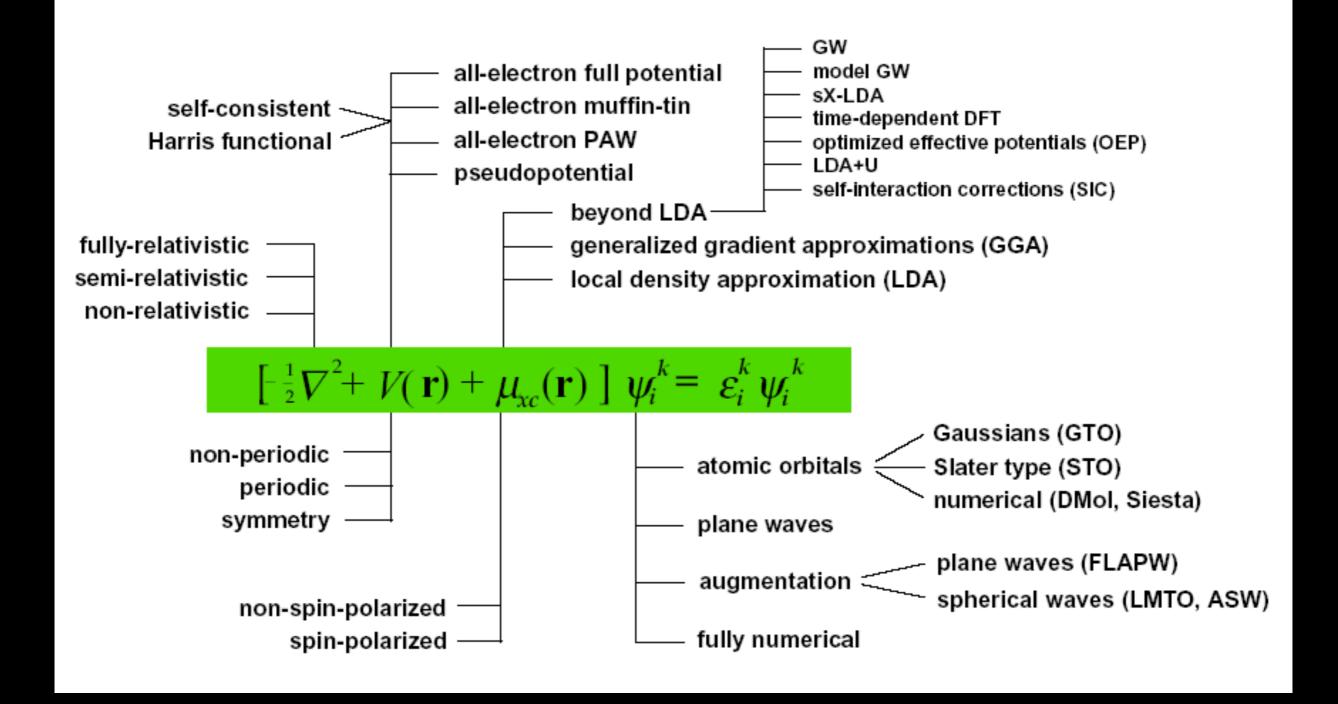
$$\{\sum_{i=1}^{n} -\frac{1}{2}\nabla_{i}^{2} + \sum_{i=1}^{n} v_{ex}(r_{i}) + \sum_{i=1}^{n} v_{ext}(r_{i})\}\Psi(r_{1}, r_{2}, \dots, r_{n})$$

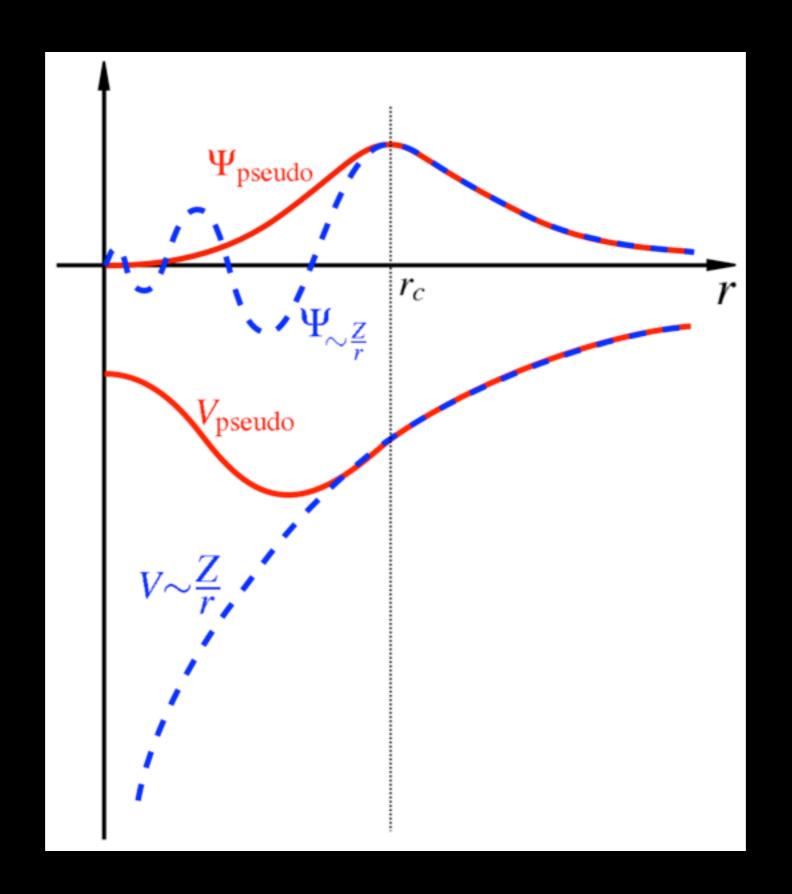
$$= E\Psi(r_{1}, r_{2}, \dots, r_{n})$$



$$\left\{-\frac{\nabla^2}{4} + \frac{|\nabla n|^2}{8n^2} + v(\mathbf{r})\right\}n(\mathbf{r}) = En(\mathbf{r})$$

DFT Implementations





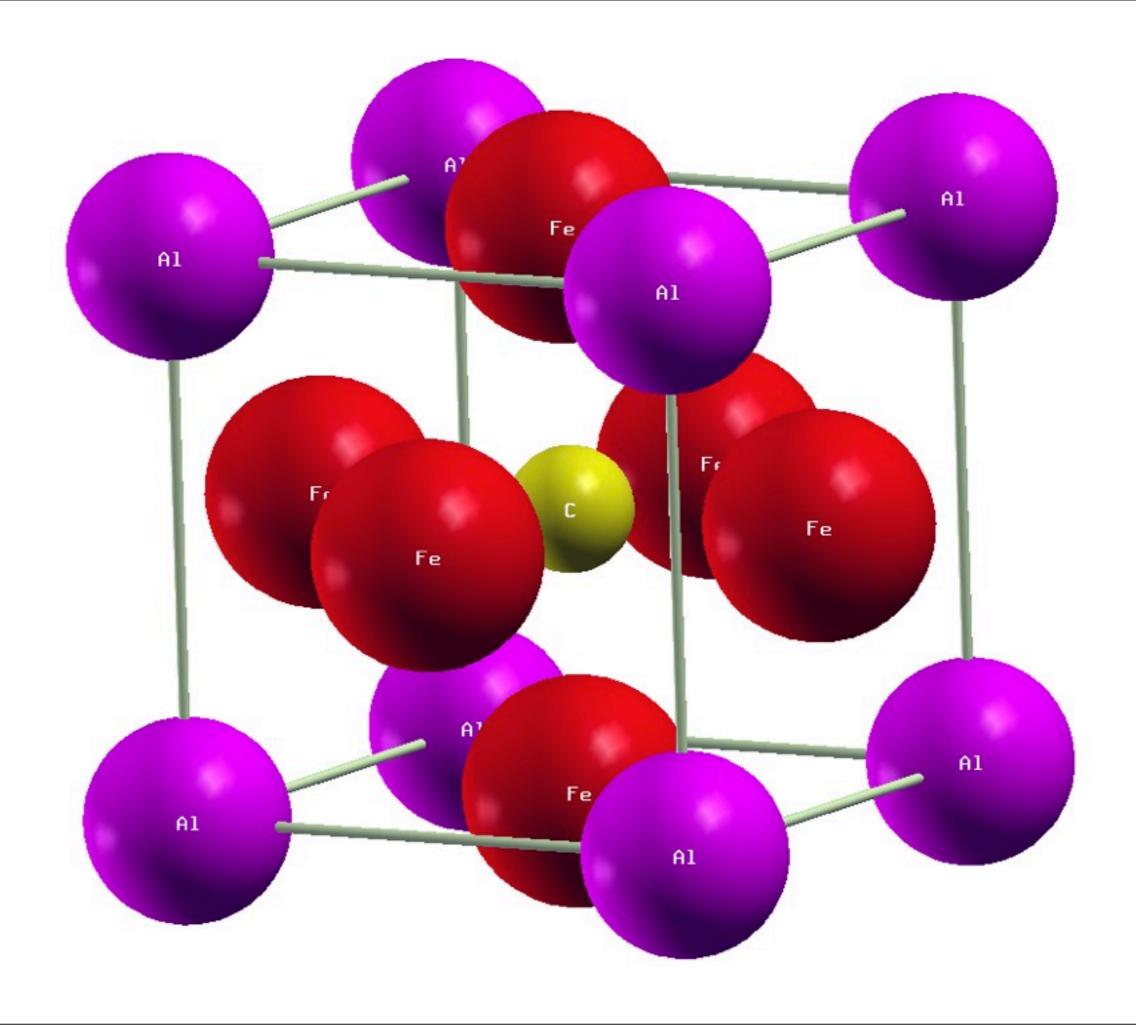
Strong point

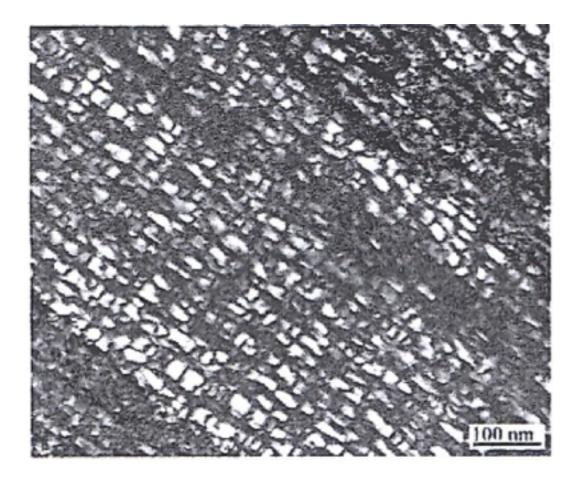
- Calculation at 0K is accurate (by theory).
- Making system is easy.
- Magnetic and electric properties.
- It can give thermodynamic variable.

Limitation

- It only calculate ground energy (0K).
- System size is small.
- Computer is too slow.

к-carbide





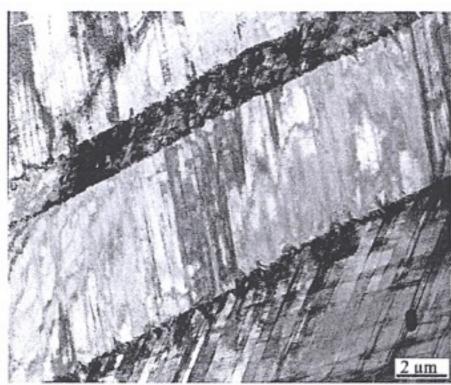


Figure 8a. TEM bright-field image exhibits shear bands on {111} planes in the austenitic matrix.

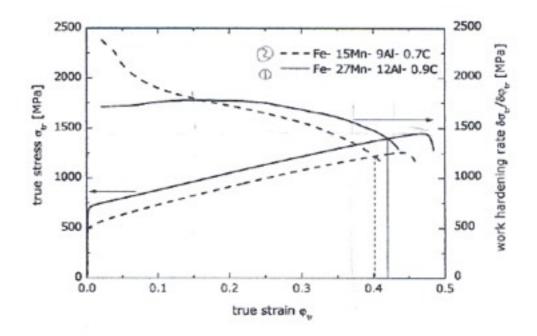


Figure 5. True-stress ' σ_{tr} ' as a function of true-strain ' ϕ_{tr} ' and the related work hardening rate $\delta\sigma_{tr}/\delta\phi_{tr}$ curves of two selected high-manganese-aluminium-carbon steels are showing that Considère's criterion is fulfilled for large plastic strains of about $\phi_{tr} \approx 0.42$.

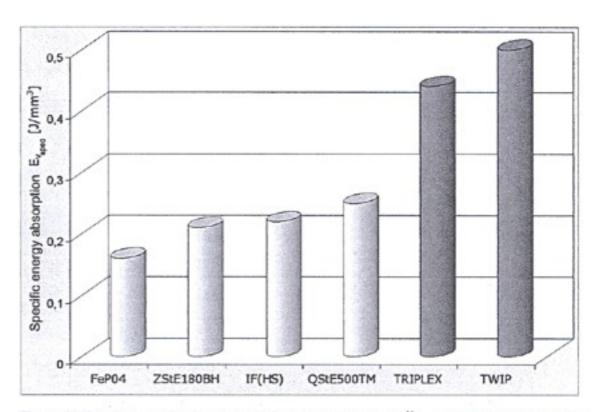
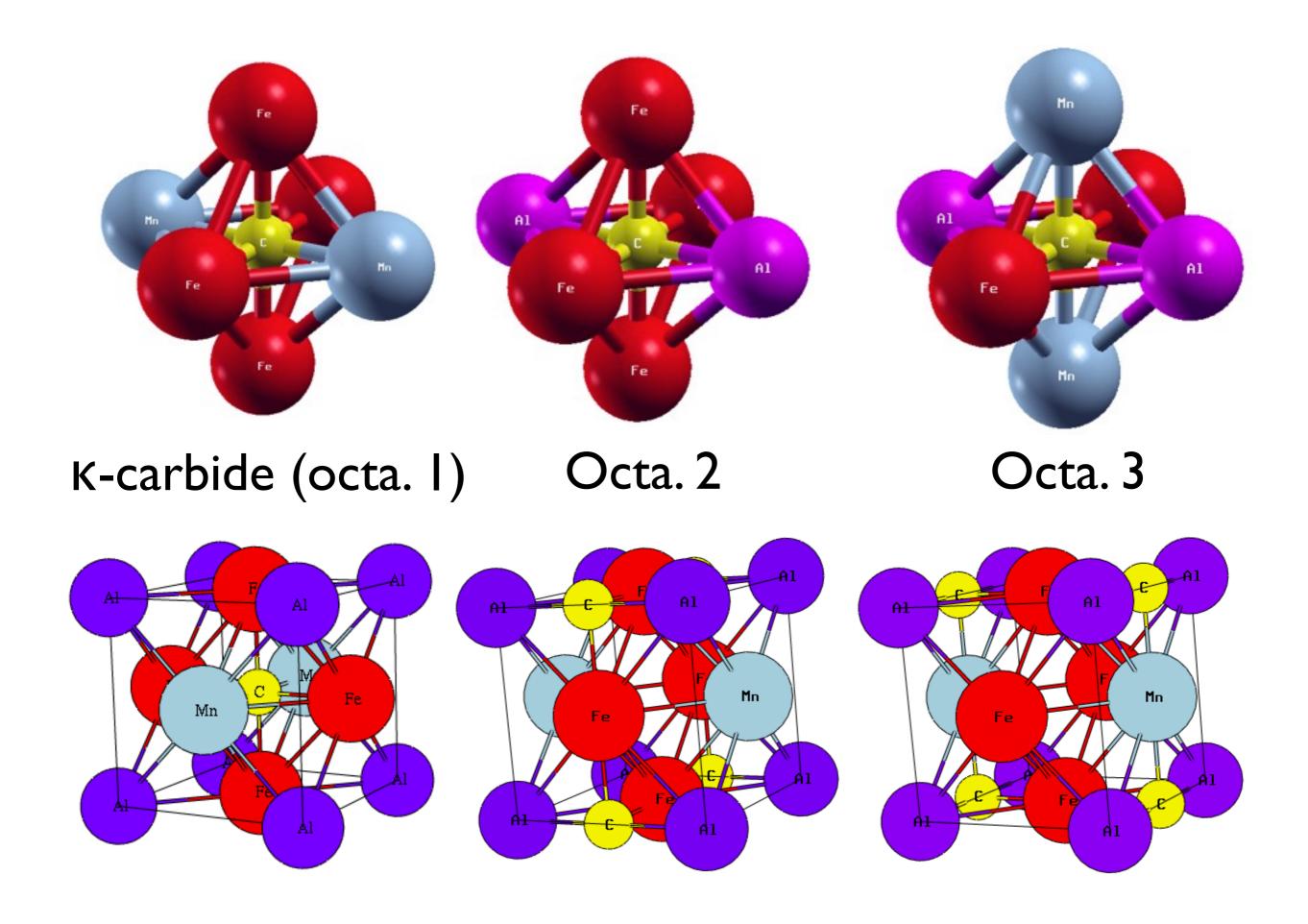


Figure 11. Bar diagram showing the specific energy absorption $E_{\text{spec.}}^{\text{V}}$ of a TRIPLEX steel and a TWIP steel in comparison to conventional deep drawing steels at the crash relevant strain rate of $\dot{\epsilon} = 10^2 \text{ s}^{-1}$.

G. Frommeyer and U. Brux, 2006, steel research int. 77 (2006)



Main problem

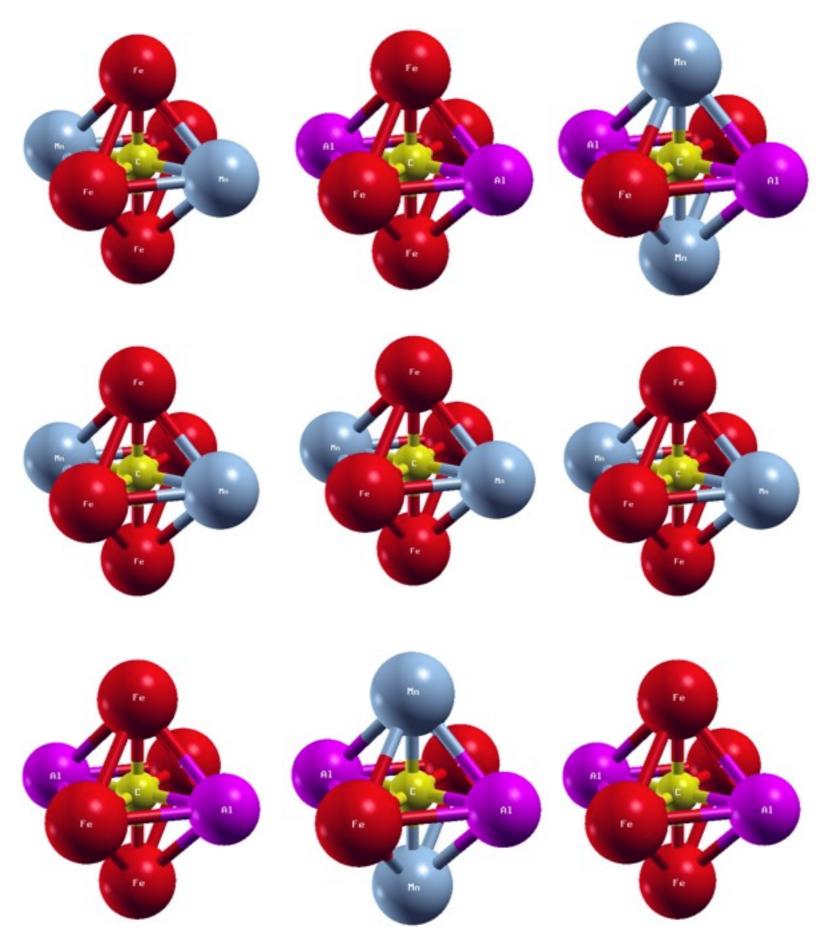
Compounds	CALPHAD assessment	FLAPW*	Pseudo Potential*
L1 ₂ Fe ₃ Al	$-17.5^a, -19.3^b$	-8.8 ^c	-19.3^d , -21.4^e
E2 ₁ Fe ₃ AlC	$-18.2^a, -16.0^b$	-27.9^{c}	-18.4^{e}
E2 ₁ Mn ₃ AlC	-27.3^{a}	-	-

in kJ/atom - mol

Reassess the ab initio result to finite temperature.

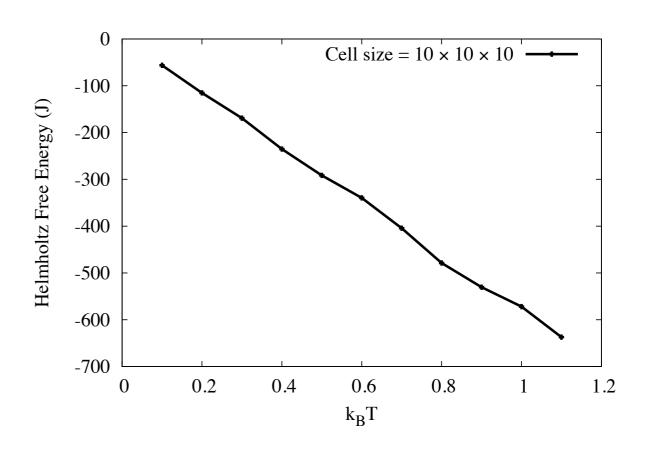
Determine physical properties: bulk modulus, elastic constant, etc.

Monte-Carlo simulation



Monte-Carlo results

- There is no phase transition.
- C++ can't deal a number over 10²⁵⁶.
- If once the variable (for example, DOS) became bigger than limit, log value is also goes to infinite.
- : we should separate bottom and exponent.



 $F_{Helmholtz} = kT ln(sum of DOS)$

