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Abstract

The overall aim of this work is to find the way of improving impact
toughness of weld metals. There were two kinds of specific work included in

the thesis.

One is to find the significant phenomena about impact toughness of weld
metal using neural network modelling and to study the related metallurgy. At
the beginning of the work, it was discovered that double logarithms used to
represent the output form in order to avoid negative outputs leads to
unjustified bias in the modelling. The method was therefore abandoned.
Through the analysis of neural network predictions, it was found that
increasing interpass temperature could reduce impact toughness in some
circumstances. It was interesting that unique domains were identified in the
nickel-interpass temperature plots, which were not typical in similar plots

involving carbon, chromium and manganese.

The later part of the thesis was dedicated to the study of a recent discovery,
coalesced bainite, which is known to be detrimental to the toughness of steel.
The martensite-start temperatures of the 2Mn and 0.5Mn alloy were
systematically measured, followed by the isothermal transformation of
samples above the measured martensite-start temperatures. This was done in

order to generate the coalesced structure at a constant temperature for the first

I



time. There seemed to be a greater tendency to form coalesced bainite at low
temperatures which is consistent with the qualitative mechanism of the phase.
Coalesced bainite was observed not only to originate at austenite grain
surfaces but also occurred intragranularly. It has been confirmed that
coalesced bainite occurs at the early stages of transformation, which is

reasonable given the scale of the phase.
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Nomenclature and Abbrevations

Acy Temperature at which ferrite starts to transform into

austenite during heating (Ac standards for Arret Chauffage)

Aer Equilibrium temperature for austenite + ferrite or ferrite +

cementite phase boundary

Dre Variable related with iron diffusion distance during post-

weld heat treatment

|[AGY¥| Free energy change for transformation without composition
change

Ms Martensite-start temperature

P Point source energy input rate

0 Activation energy

R Gas constant

r Polar coordinate with respect to point heat source

T Temperature

Ty Temperature at which austenite and ferrite of the same

composition have the same free energy
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Ty

T$™

T:

ty/s

BCC

Far field temperature

Transformation temperature austenite to ferrite

Ductile to brittle transition temperature

Cooling time between 800 C and 500 T

Velocity of point heat source

Normalized value

Ferrite

Acicular ferrite

Widmanstitten ferrite

Thermal conductivity

Volume fraction

coordinate measuring translation of heat source

Standard deviation

Body-centered cubic

VI



CCT Continuous cooling transformation

CSLM Confocal Scanning Laser Microscopy

EBSD Electron backscatter diffraction

FCC Face-centered cubic

FEGSEM Field emission gun scanning electron microscopy
GMAW Gas metal arc welding

GTAW Gas-tungsten arc welding

MMAW Manual metal arc welding

MTDATA Metallurgical thermochemical databank

HI Heat input

ISO International organisation for standardisation
IT Interpass temperature

ppmw Parts per million by weight

PWHTT Post-weld heat treatment temperature

PWHTt Post-weld heat treatment time

VIII



SAW Submerged arc welding

TEM Transmission electron microscope

TT Test temperature for Charpy toughness
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I . Introduction

The ultimate aim of this work is to find factors which can improve the
impact toughness of weld metals. Thus at first, fundamental information about
impact toughness was introduced and then the variables which can affect the
toughness were examined. Secondly the basic theory of neural network as a
good tool for impact toughness modelling and its application were explained.
Finally the qualitative theory of coalesced bainite whose presence was

predicted by neural network was also treated.

1. Impact toughness of weld metals
1.1 Impact toughness

Impact toughness is generally represented by a Charpy test in which a
square sectioned, notched bar is fractured under given conditions and the
energy absorbed in the process is taken as an empirical measure of toughness.
The tests are carried over a range of temperature, and a plot of the impact
toughness versus temperature is called an impact transition curve, which is

usually sigmoidal (Fig. 1.1) (Bhadeshia, 2001).



Upper shelf

Transitionfregion

Energy absorbed

Lower shelf

Temperature

Fig. 1.1: Schematic impact transition curve (Murugananth, 2002)

The flat region of the curve at high temperatures is called the upper shelf
and represents ductile failure. The flat region at lower temperatures is called
the lower shelf and corresponds cleavage failure. In the transition region
between these, cleavage and ductile failure is mixed. The impact transition
temperature (77) is usually defined as that at which fracture shows 50 %
cleavage (Bhadeshia, 2001).

The test is usually performed at a variety of temperatures in order to
characterise the ductile to brittle transition intrinsic to body-centered cubic
metals. In such metals, the cleavage stress is not sensitive to temperature; on
the other hand, the stress required for plastic flow rises rapidly as the
temperature decreases (Fig. 1.2). The temperature where the curves
representing the cleavage and flow stress cross is represented as the transition
temperature (7). Below T, cleavage is easier than plastic flow and vice versa

(Bhadeshia, 2001).



cleavage
stress

Stress

plastic

ductile > flow
stress

< prittle

=
t Temperature

Fig. 1.2: Influence of temperature on the stress required for cleavage and plastic flow

(Bhadeshia, 2001)

The Charpy test is empirical in that the data cannot be used directly in
material design. It is, nevertheless, an essential quality control measure which
is specified widely in international standards, and in the ranking of samples in

research and development exercises (Bhadeshia, 2001).

1.2 Welding

Welding is a method for a strong joint between base metals, especially
steels. As the field of steel application has enlarged to extreme circumstances,
for example, the construction of architectures for oil exploitation in the polar
regions such as the North sea and the Gulf of Alaska, higher toughness of
weldments have become crucial (Ohkita and Horii, 1995). On the other hand
it has been accepted that maintaining good toughness is problematic as
strength levels increase above the region of 690 MPa. (Svensson, 1999;
Widgery et al., 2002). Improving the impact toughness of weld metals is a

challenging issue in metallurgy.



1.3 Variables describing weld metal
To understand weld metals, it is important to know the alloying elements

added and the welding parameters.

1.3.1 Alloying elements

Alloying elements are important because they determine microstructural
evolution in weld metals. They consequently play a role regarding mechanical
properties. Grain refinement by alloying is the most favoured strengthening
mechanism in high-strength steel weld metals since it also contributes to
toughness. Alloying elements also can cause precipitation strengthening

(Keehan, 2004).

Carbon with its strong hardening effect, increases the volume percentage of

hard microstructures, e.g., martensite, in a steel weld (Wang 2002).

Manganese and nickel are very important in the solidification process of
weld metals. Large additions of these elements can hinder the formation of J-
ferrite entirely and instead the weld metal solidifies directly to austenite
(Lord, 1999 and Edvardson et al., 1976). In addition, both elements cause

solid solution strengthening.

Silicon contributes to solid solution hardening. The addition of silicon
(in high concentrations, 1.5 wt%) have been reported to prevent poor
toughness in bainitic steels because it suppresses the precipitation of
cementite, which can be brittle (Bhadeshia 1999b). Silicon and manganese are

important deoxidising elements in welding systems (Wang 2002).

Nitrogen and oxygen are important solutes which participate in

precipitation reaction and in forming non-metallic inclusions that may or may



not be beneficial to the final microstructures and mechanical properties of a

weld metal (Wang 2002).

It is important to realize that solute additions to the vast majority of weld
metals must be kept at a minimum to avoid the risk of brittle fracture

(Bhadeshia, 2007).

1.3.2 Welding parameters

There are five kinds important welding parameters when making electric
arc welds: preheating temperature, interpass temperature, heat input, post-
weld heat treatment. Since preheat/interpass temperature and heat input
influence the cooling rate of the metal, they are important with respect to the
final microstructure. Post-weld heat treatment influences the final strength and

therefore the toughness. The individual parameters are introduced below.

Preheating refers to the temperature of the base metal, either in its entirety
or just the local region surrounding the joint, to a specific desired temperature,

called the preheat temperature, prior to welding (Funderburk, 1997).

Interpass temperature is that to which deposited metal is allowed to cool
before depositing more metal by welding in a multipass welding

(Funderburk, 1998).

Heat input is a relative measure of the energy transferred per unit length of
weld during welding. This cannot be measured directly, however, it can be
calculated from the measured values of arc voltage, current and welding speed

(Funderburk, 1999).

Post-weld heat treatment is defined as any implemented after welding, is



often used to temper microstructure which would otherwise be brittle, or for
relieving residual stresses (Funderburk, 1998). Sometimes a low- temperature

treatment at 250 C is used to allow dissolved hydrogen to be removed.

1.4 Microstructure of weld metal

The microstructure of weld metals consists of mixtures of allotriomorphic
ferrite (), Widmanstétten ferrite («,,), acicular ferrite («,) and the so-called
microphases, for example, small quantities of retained austenite and
martensite (Bhadeshia and Svensson, 1993). Allotriomorphic ferrite is weak
and provides easy crack paths and Widmanstétten ferrite suffers from poor
toughness because the plates form in parallel packets with few
crystallographic discontinuities (Bhadeshia, 2007). On the other hand,
acicular ferrite has a very fine grain size and a high concentration of
dislocations that are responsible for its good toughness and ductility
(Pickering, 1978). Therefore, there have been many attempts to explain the
good impact toughness of weld metal in terms of the fraction of acicular
ferrite (Ohkita and Horii, 1995). Zhang and Farrar (1997) reported that the
best toughness in weld metal was achieved with a high volume fraction of
acicular ferrite, although small quantities of other phase are nevertheless
desirable. This implied that achieving a large proportion of acicular ferrite and
ensuring the least amount martensite would result in good toughness. Keehan
et al. (2006a) found that coalesced bainite can be formed in weld metals,
which should be detrimental to impact toughness. This will be treated in this

thesis.

2. Neural network
The mechanical properties and microstructure can be influenced by a wide
variety of parameters, which have their own individual and combined effects.

Neural network models are extremely useful in such circumstances, not only

6



in the study of mechanical properties but wherever the complexity of the
problem is overwhelming from a fundamental perspective and where
simplification is unacceptable (Bhadeshia, 1999a). The principle of the neural
network work utilized here is deeply embedded with Bayesian framework
(Mackay 1992a, 1992b, 1994, 1995b) and it is out of scope of this thesis to
present it in detail. However, the fundamental structure and important

concepts of the neural network are presented below.

2.1 Structure of neural network
A neural network is a powerful nonlinear regression method. It can reveal
correlations between large numbers of variables in complex system. It has a

transparent structure.

O @ ® G
Wt S
L/

au
\

h=tanh(3 w;Mx+61)

yzz M{,(Z) f5.+ g2

v

Charpy toughness

Fig. 1.3: Schematic illustration of the structure of a neural network

In Fig. 1.3, each input x; is multiplied by a random weight wij(l) and the
products are summed together with a constant 8. The summed products are
activated by a tangent hyperbolic function which is chosen because of its

flexibility. Then the activated term /; hidden unit is multiplied by another

7



weight wj(z) and summed with a constant 8 to give the output y. In a training
process, inputs are given as training data and the maximum number of /; can
be selected. Thus creating a model means finding a proper weight vector w

over weight space. Bold font represents vectors (Bhadeshia, 1999a).

2.2 Error estimates
The overall error can be estimated by comparing the predicted values (y;) of

the output against those measured (¢)):

Ep o< ¥(tj — y)? (1.1)

Ep is expected to increase when important variables are missing in the dataset.
Ep gives an overall perceived level of noise in the output
(Bhadeshia, 1999a). There is a difference between noise and modeling
uncertainty (Bhadeshia et al., 2007). Noise results in a different output for the
same set of inputs when the experiment is repeated. This is because there are
variables which are not controlled so their influence is not included in the
analysis. It is measured constant value, thus it cannot help much in assessing
the behaviour of the model when extrapolating.

However modeling uncertainty comes from the fact that there may exist
many mathematical functions which adequately explain the same set of
empirical data but which behave differently in extrapolation. This is well
illustrated in Fig. 1.4. At B region where enough data can be used for
modelling, different models behaves similarly each other. However, at A
region where data is sparse and noisy, thus the modeling uncertainty is clearly
large with a lot of variance in the predictions of different functions. Unlike the
noise, the magnitude of the modeling uncertainty depends on the position in
the input space where a calculation is done. The modeling uncertainty is

especially important because it can indicate the region of input space where



further study or experiment is required.
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Fig. 1.4: An illustration of how a number of different functions might adequately

represent the same set of given data (Bhadeshia ef al. 2007).

2.3 Overfitting

The problem with neural networks is that a flexible network can be made to
fit data even when the latter are noisy. To avoid this, the experimental data can
be divided into two groups, a training dataset and test dataset. The model is
first produced by using only the training dataset, then its generalization is
checked against test data which had not been used in creating the model. Fig.
1.5 shows the evolution of training and test error as a function of the control

parameters which determine the complexity of the model.
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\
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-

Fig. 1.5: Schematic diagram explaining the optimization of model complexity

(MacKay, 1995a)

Even though a model with high complexity in associated with a small
training error, it may generalise badly if the model was overfitted. In Fig. 1.5,
a proper model should be in the region designated II. In practice, the number

of hidden wunits can be one of the model control parameters

(Bhadeshia, 1999a).

2.4 Significance

Neural network based on a bayesian framework can estimate the
significance of individual input parameters influencing the outputs
(MacKay, 1994). A high value of significance implies that the input parameter
concerned explains a relatively large amount of the variation in output and it

is not an indication of the sensitivity (Fujii ef al., 1996).

10



2.5 Committee model

The variety of models produced can be ranked according to the magnitude
of the test error. The best individual model would then have the minimum test
error. However, it is possible in principle to reduce the test error further using
the average of predictions from a number of models, i.e. a committee of
models. Fig. 1.6 illustrates that the test error can be minimized by a committee

model which in this case consists of 19 sub-models.

115 -
11 -
10.5 A
10 ~

9.5 | x

Combined test error

x
X % x ¥
X 0%

8.5 T T

Number of models

Fig. 1.6: Evolution in the test error with the number of ranked models in the

committee (extracted from this work).

The mean prediction y of the committee model can be obtained as follows:
— 1N
y=52Zi=1Vi (1.2)
and the associated error in y is given by

1 1 =
o’ 252?2101'2 +NZ§V=1(yi - ¥)? (1.3)

11



where y; and o; are the prediction value and error of an individual model

(MacKay, 1995a).

2.6 An example of application

It has been recognized that adding nickel influences the stacking fault
energy of ferrite in such manner that plastic deformation can be
accommodated at low temperatures (Svensson, 1994). However in the
calculations using a neural network, Murugananth (2002) showed that adding
nickel does not in fact improve the toughness at high concentrations of
manganese. It was predicted that adding nickel enhances toughness only when
the manganese concentration is low (Fig. 1.7). This remarkable result led to
further research about the microstructure in low toughness weld metals.
Keehan et al. (2006a) were able to explain these observations in terms of a
coarse constituent found in Fe-7Ni-2Mn wt% weld metal which reduces

impact toughness.

12



o
o Fe-9NIi-2Mn wt%
Measured Toughness : 10J

Fe-7Ni-2Mn wt%
Measured Toughness : 15 J

Nickel / wt%

05 1.0 15 20 25 3.0 35 4.0
Manganese / wt%

(a)

Nickel /wt %

Manganese / wt%
(b)

Fig. 1.7: Effect of manganese and nickel on toughness, as predicted using the neural

network models (a) predictions (b) +16 uncertainty in prediction
(Muruganath, 2002).
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3. Coalesced bainite

3.1 Mechanism

Coalesced bainite has recently become prominent although the original
observations were reported in 1979 (Bhadeshia et al., 2006). Its formation

mechanism is only qualitatively understood and is summarized in Fig. 1.8.

Nucleation begins with carbon

supersaturated plates beginning
\\\ to form.

Supersaturated plates coalesce
and form one big superaturated plate.

. Carbon diffusion into austenite and
. carbon precipitation in ferrite.

" W s oma o
g T Tyt

A

Carbide precipitation
from austentite

COALESCED BAINITE
Fig. 1.8: Schematic diagram of the formation of coalesced bainite (Keehan, 2005)

The transformation begins with the formation of the normal small subunits
of bainite, but they then coalesce to form a single large plate, followed by the
partitioning or precipitation of carbon. The coalescence is accompanied by a
thinning of the austenite films between bainite subunits. The films eventually
disappear as the subunits develop into the coarser structure. Given that the

adjacent subunits all have identical orientation, it is reasonable that they
14



should combine and grow as a single unit (Chang and Bhadeshia, 1996).

There are two kinds of assumption for coalesced bainite.

1) There should be sufficient chemical driving force to bear the

larger amount of strain energy associated with a thicker plate.

This condition is satisfied because the transformation occurs at the largest
feasible undercooling below Bs. An analysis using a theory for elastically
accommodated plates has shown reasonable consistency between the driving

force and expected strain energy (Chang and Bhadeshia, 1996).

2) There is nothing to stifle the lengthening of the subunits.

This implies that coalescence is only possible at the early stages in the
transformation of austenite because the carbon concentration of the austenite
increases as transformation progresses then it leads to decreasing in chemical
driving force |[AGY*|. This should render coalescence much less likely

(Chang and Bhadeshia, 1996).

There are several reasons why coalesced bainite should form only at low
transformation temperatures. The partitioning of carbon from the
supersaturated ferrite to austenite is relatively suppressed at low temperatures,
permitting the plates to form without any intervening austenite (Bhadeshia et
al., 2006). Another reason is that the shape deformation accompanying the
growth of bainite is not completely elastically accommodated. The yield
strength of all phases is higher at lower temperatures thus the subunits can
lengthen longer. This provides a greater opportunity for coalescence to occur

(Chang and Bhadeshia, 1996).

15



3.2 Coalesced bainite in weld metals

Experiments have now confirmed that the coarse, coalesced bainite appears
in weld metals alloyed such that the bainite forms at temperature close to the
martensite-start temperature (Keehan et al., 2006a). Keehan et al. (2006b)
also found that the welds with relatively poor toughness always contained the
coarse coalesced bainite, whereas the low-Mn high-Ni welds with much better

toughness did not.

16



II. Experiments

1. Neural network modelling
1.1 Collecting data

A extensive database consisting of 5973 combinations of Charpy toughness
and 23 inputs including the chemical composition, welding parameters and
test temperature was compiled. Welding processes include manual metal arc
welding (MMAW), submerged arc welding (SAW), gas tungsten arc welding
(GTAW) and gas metal arc welding (GMAW). All data are real experimental
results and collected from laboratory experiments and published papers. The
sources are listed separately in a reference chapter. About 4000 data were
gathered by previous researchers (Murugananth. 2002).

During the collection of data, the concentrations of some elements, for
example, chromium, vanadium, copper, cobalt, tungsten, titanium, boron and
niobium sometimes were not reported in the published literature. They were
treated as zero since the failure to report was taken to mean that there were no
deliberate additions.

The heat input was calculated from:
heat input = % 2.1)

where V' is an arc voltage, / is a current and S is a welding speed.

When the range of acceptable interpass temperature was stated instead of a
specific temperature, its averaged value was used. When an interpass
temperature was not stated, it was assumed to be 200 C if the joint geometry
corresponded to ISO 2560.

For the post-weld heat treatment, the opinion of Dr. Leif Karlsson in ESAB

AB (Sweden) was respected. He explained that heat treatments below 500 C

17



are not post-weld heat treatments (PWHT) intended to modify structure and
properties and for steels PWHT is rarely done below 500 C. Thus PWHT
below 500 C were considered to correspond to the as as-welded condition,
where PWHT temperature and time were set as 20 ‘C and 0h, respectively.

Dk is a calculated variable included as a representation of iron diffusion

during post-weld heat treatment:

Dge = 3600 X pwht X exp (ﬁ) 2.2)
where O, R and T correspond to a activation energy for the self-diffusion of

iron, gas constant and absolute temperature, respectively:

Q = 260000 ] mol™?
R=831]K 1mol™?
T = 273.15 + pwhtT(C)

However, when original Dg. values were used as input parameters, the
computations did not recognize them properly because the numbers ranged
over many orders of magnitude. Thus the values of Dy, multiplied by 10*

were used, normalized between -0.5 and 0.5 as follows:

X, = ——min__ 5 2.3)

Xmax~Xmin

where x, is the normalized value, x is the real value, and x,,;;, and X,y

are minimum and maximum values of the data set, respectively.

18



1.2 The analysis of database

The information of database is listed in Table 2.1

Table 2.1 The information of database

Variable Range Mean Standard deviation
C/wt% 0.008-0.19 0.07 0.02
Si/wt% 0-1.63 0.35 0.14
Mn/wt% 0-2.31 1.20 0.40
S/wt% 0.002-0.14 0.01 0.01
P/wt% 0-0.25 0.01 0.01
Ni/wt% 0-12.40 0.88 1.83
Cr/wt% 0-19.50 0.35 1.19
Mo /wt% 0-2.43 0.20 0.31
V/wt% 0-0.53 0.01 0.03
Cu/wt% 0-2.18 0.08 0.21
Co/wt% 0-0.092 0.003 0.01
W/ wt% 0-3.86 0.004 0.11
O/ppmw 25-1700 429 161
Ti/ppmw 0-770 71 115
N/ppmw 0-1000 95 67
B/ppmw 0-200 8 27
Nb/ppmw 0-1770 32 109
HI/kJmm 0.21-16.36 1.49 0.83
IT/ C 20-350 182 39
PWHTT/ C 20-940 198 287
PWHTt/h 0-100 1.3 42
D 0-3.68 x 10" 6.22 x 10" 4.47 x 10"
TT/ C -196-136 -34.5342 36
Charpy toughness/J 0.1-356 85 50
ppmw: Part per million by weight
HI: Heat input IT: Interpass temperature

PWHTT: Post-weld heat treatment temperature

PWHTt: Post-weld heat treatment time

Dr.: A variable for iron diffusion during post-weld heat treatment
TT: Test temperature

Fig.2.1 shows the distribution of used data. Carbon, manganese, nickel,
oxygen and interpass temperature efc. were expected to have balanced

uncertainties since they were well distributed relatively.
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Fig. 2.1: Distribution of individual input parameters in database.

2. Coalesced bainite
2.1 Weld metal

2UU

Based on Keehan’s work (2006a), two kinds of weld metal were prepared

by ESAB AB (Sweden), 2Mn, 0.5Mn respectively (Table 2.2).

Table 2.2 Compositions of weld metal (wt%)

C Si Mn P S Cr Ni Mo \
2Mn 0.03 023 205 0.01 0.008 043 7.1 0.63  0.004
0.5Mn 0.025 039 058 0.01 0.009 0.15 6.5 0.39  0.001
Co A% Nb Cu Al Ti B (0] N
2Mn  0.008 0.021 0.004 0.02 0.001 0.011 0.0012 0.031 0.011
0.5Mn 0.009 0.018 0.002 0.02 0.001 0.015 0.0012 0.033 0.009

2.2 Dilatometer

Cylindrical dilatometric samples of diameter 3 mm and length 10 mm were

machined from both weld metals with their longitudinal directions parallel to

31



that of welding. A push-rod BAHR DIL805 high-speed dilatometer with radio
frequency induction heating was used. The sample temperature is recorded by
a thermocouple welded to its surface. For determining the martensite-start
temperature (Ms), a temperature profile was designed to heat up the sample to
1100 C for 3 minutes followed by cooling using helium gas at a variety of
rates: -150, -125, -100, -75 and -50 C s”'. For isothermal transformation,
following austenisation at 1100 C for 5 minutes and each sample was cooled

down to the target temperature within 7s. Each sample was used only once.

2.3 Hardness tests
Hardness can be used as supporting evidence in the determination of Mj,
The stated value corresponds to an average of ten measurements made at

random location on each sample.

2.4 Microscopy

Metallography was conducted on the samples used in the dilatometer
experiments. They were mounted in Bakelite, wet ground, polished to 0.25 um
diamond paste and etched using 2 % nital etchant for light optical microscopy

and field-emission gun scanning electron microscopy.
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III. Determination of the martensite-start temperature

An accurate of determination of the martensite-start temperature (Ms) is
important because coalesced bainite is known to form in circumstances where
the bainite-start temperature (Bs) is close to Ms (Keehan ef al. 2006). Chang
and Bhadeshia (1996) reported that coalescence occurred in a sample
transformed isothermally at a temperature which is just 10K above Ms. The
offset method developed by Yang and Bhadeshia (2007) was used to interpret
dilatometric data because it provides an objective method for extracting

reproducible information regarding the transformation-start temperature.

1. The transformation-start temperature

Since the martensite transformation is generally an athermal transformation,
it should be independent of the cooling rate, especially in ordinary low-alloy
steels and within the cooling capabilities of the dilatometer used.
Consequently, it should be possible to determine Ms from the point at which
the transformation-start temperature (75'”) ceases to change as the cooling rate

is increased.
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—_Increasing cooling rate

Increasing transformation-
start temperature

Temperature
X

Time

Fig. 3.1: Schematic diagram showing that Mg corresponds the point at which 75"

ceases to change as the cooling rate is increased.

1.1 The 2Mn alloy

Fig. 3.2 shows the dilatometric curves of the 2Mn alloy for each cooling

rate. Strain is the ratio of dilatation length to the original length (10 mm) of

sample.
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0.C16
0.C14 -
0.012 -
0.01 -
0.C08 -

0.006 -

Strain

0.004 -
0.002 -
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'O.CO4 I I I I
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Temperature / C

(e)-50 C s
Fig. 3.2: Dilatation curves of the 2Mn alloy for each cooling rate (a) -150 C s™
(b)-125 C s (¢) -100 C s (d)-75 C 5™ () -50 C 5!

All curves maintained a linear profile during cooling, which means that the
martensitic transformation was not interrupted by any other reaction. The A
temperature was also measured by the offset method (Yang and Bhadeshia,
2007) to compare with A, calculated using MTDATA based on chemical
composition of Table 2.2 in chapter 2. The calculation used MTDATA for
Window version 4.74 and the TCFE:TCAB database for steels vI.0-6
September 2001. The phases allowed to exist were FCC_Al, BCC_A2 and
CEMENTITE. All elements were forced into equilibrium. The temperature at
which CEMENTITE disappears was used as the 4. temperature. In this way,
the measured Ac; and calculated A, temperatures were found to be
674 C £5 C and 444 C.

Fig. 3.3 shows the change of 7" with the magnitude of the cooling rate.
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Fig. 3.3: Variation of 75" of the 2Mn alloy with the magnitude of the cooling rate.

There are irregular trends as a function of cooling rate, with 7" for
-125 C s being as high as that for -50 C s”'. However the dilatation curve
for -125 C s™ could not be faulted as shown in Fig. 3.2 (b).

As a precaution, the overall chemical composition of the -125 C s’

sample was chemically analyzed. The results in Table 3.1 show that the
composition of the sample is identified to that of the weld metal. The results
illustrated in Fig. 3.3 are therefore considered to be correct in spite of the

scatter.

Table 3.1 Composition of weld metal and that of the -125 C s™' sample (wt%)

Mn Ni Si
2Mn weld metal 2.05 7.1 0.23
-125 C s sample 1.98 7.04 0.392

Measured hardness values of 2Mn in Fig. 3.4 were more interesting. All

samples have eventually the same hardness. Furthermore, the slowest cooling
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rate produced as hard a microstructure as the other samples within the

observed scatter.

Hardness /HY 2
S—
—

Fig. 3.4: Variation of hardness of the 2Mn alloy with the magnitude of the cooling rate

Optical micrographs for each of the samples are shown in Fig. 3.5.

(a)-150 T s™
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2125 C s

(b)

(c)-100 T s
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(e)-50 T s™

Fig. 3.5: Optical micrographs of dilatometric samples cooled at (a) -150 C s™" (b) -
125 C s (¢)-100 C s (d)-75 T s (e) -50 T s

All the micrographs show similar microstructures consistent with a
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martensitic state and it is particularly relevant that there is no obvious
difference between -150 and -50 C s samples. It cannot therefore be
assumed that the cooling curve of -50 C s’ fell into the increasing
temperature region of Fig. 3.1.

To conclude, the 75" temperatures of all cooling rates are consistent with
the constant temperature region. Table 3.2 shows the full set of results from
the 75 analysis for each cooling curve. Different offsets correspond to the
results from individual tangent lines those were produced from different

temperature regions during cooling, 400-430 C, 400-460 C and 400-500 C.

Table 3.2 All T§"” temperatures of the 2Mn alloy for each cooling curve (C)

offsetl offset2 offset3 average standard

deviation
150 C s 344 344 344 344 0
125 C s 375 376 376 376 0.6
100 C s 333 336 337 335 2.1
75 Cs’! 351 351 352 351 0.2
50 C s 375 376 376 376 0.6
Total 356 17

In conclusion, the Ms of the 2Mn alloy can finally be set at 356 C +17 TC.
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1.2 The 0.5Mn alloy
The same analysis was performed on the 0.5Mn alloy. Fig. 3.6 shows the

dilatometric curves for each cooling rate.
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Fig. 3.6: Dilatation curves of the 0.5Mn alloy for each cooling rate (a) -150 C s
(b)-125 T s’ (c)-100 C s (d)-75 T s (e)-50 C s’

All of them are well-behaved in the cooling stages. Following the
procedure for the case of the 2Mn alloy, Ac; and A, temperatures were
685 T +£8.4 T and 561 TC, respectively.

Fig. 3.7 shows the change of T7¢* of the 0.5Mn alloy with the

magnitude of the cooling rate.
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T temperature / C

Fig. 3.7: Variation of Tg'* of the 0.5Mn alloy with the magnitude of the cooling rate.

The highest cooling rate produced the highest 75", which is contradictory
to the theory in Fig. 3.1. However, as confirmed, the dilatation curve of
-150 C s cannot be faulted.

In Fig. 3.8 the hardness of -150 C s™' sample is lower relatively than those
of other cooling rates; however, it is within the standard deviation of the
measurements. There is no reason therefore to exclude the 7¢’* of -150 C s™

in determining Ms.
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Fig. 3.8: Variation of hardness of the 0.5Mn alloy with the magnitude of the cooling

rate

It is noticeable that the lowest cooling rate also produced hard structure
with a small deviation. Therefore all the 75’ temperatures were assumed to be
in the constant temperature region in Fig. 3.1 thus used to fix the Ms of 0.5Mn.

The results are listed in Table 3.2.

Table 3.3 All 75" temperatures of the 0.5Mn alloy for each cooling curve (C)

offsetl offset2 offset3 average standard

deviation
150 C s’ 428 429 429 429 0.6
125 C s 390 391 391 391 0.6
100 C s 380 380 381 380 0.6
75 C s 407 407 409 408 1.2
50 C s’ 409 416 416 414 4.0
Total 404 19

The estimated Mg of the 0.5Mn alloy was determined to be 404 C =19 C.
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2. Discussion about the high 7™

Further analysis was conducted of the dilatometric data to study the
development of transformation below 75’ In Figs. 3.9 and 3.10, only those
data are replotted which are below 7. It is seen that transformation rate is

suppressed in the 2Mn samples cooled at -150, -125 and -50 C s and in the
0.5 Mn samples cooled at -150 and -50 C s™.

It is speculated that remaining samples may contain a level of microscopic
chemical segregation which permits transformation to proceed more rapidly

once initiated. After all, welds do not solidify under equilibrium condition.

0.006
2Mn
0.005 & e mee. -150°C st
T . — 125%Cst
o008 O e 100%C
AR 75°C 5+
0.003 YR £gor ot
£
0.002 e
0.001
0
-200 -150 -100 -50 0 50 100 150
-0.001

Relative temperature / °C

Fig. 3.9: Relative temperature- strain curves for the 2Mn alloy. At the origin, they

have T5'” temperatures.
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Strain

0.002

0.001

-200 -150 -100 -50 0 50 100

-0.001 . .
Relative temperature / C

Fig. 3.10: Relative temperature-strain curves for the 0.5Mn alloy. At the origin, they

have 7§’ temperatures.

3. Conclusions

The offset method was used to determine Ms temperature
(Yang and Bhadeshia, 2007). The Mg of the 2Mn and 0.5Mn alloy was
determined as 356 C £17 C and 404 C +£19 T, respectively. And it was
suggested that the localization of certain solutes can cause the rate of
transformation to be affected to give a high 75 The localization could also
affect the scatter in hardness. These data will be used consequently in

interpreting the development of coalesced bainite.
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IV. Neural network modelling

The aim of the work presented in this chapter is to analyze the predictions
of a neural network model for the impact toughness of weld metal and to
study the underlying metallurgy. The first part of this work is a study of the
influence of output forms on the mathematical behaviour of the trained
function. Then the general performance of the created model is demonstrated.
Finally the effect of selected input variables and interpass temperature had

been studied and found to reveal interesting patterns.

1. Biased models

Since a neural network is a regression method, there is a risk of producing
unphysical relationships. Yescas et al. (2001) used a combination of
logarithms to avoid unphysical negative volume fractions. The double
logarithm function in that work is consistent with Avrami theory (Bhadeshia,
2001), in which volume fraction, ¢ varies as & = 1 — exp (—kt™), so that
In[—In(1 — )] should vary with nInt. Here k and n are constant and t
is the time. The volume faction is therefore naturally confined between 0 and
1.

At the beginning of this work, the following equation was similarly utilized

to avoid predicting negative values of impact toughness:

y'=—In {—ln (M)} 4.1

Ymax —Ymin

where y is the impact toughness, Vi, and V., are the minimum and
maximum set values of impact toughness. Compared with the original
equation of Yescas, a minus sign was added to retain a direct proportionality

between value of y and y'. The value of y,,;, was set as zero, the least
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physical value of impact toughness. Y4, must be larger than the maximum
value in the dataset, but beyond that its magnitude could not be justified
physically. Thus two different models were created. The y,,,, of the first
model was set to the maximum value of impact toughness in database, 357 J
and in the second model, it was arbitrarily set to ten times this value,
at 3570 J. Some calculations using randomly selected inputs from the
database (Table 4.1) are illustrated in Fig 4.1. Since the purpose was to
highlight the influence of Y.y, the extrapolation was performed to
impractically high test temperature regimes. Note that any error bars of
prediction by neural networks in this work include +1¢ and fitting uncertainty

as calculated by the Bayesian framework (MacKay, 1995).

Table 4.1 Base input conditions used for the neural network calculated to examine the

influence of ¥,,,,. All elements are in wt% unless otherwise specified.

C Si Mn S P Ni

0.034 0.27 2.14 0.008 0.01 7.3

Cr Mo v Cu Co A\

0.5 0.62 0.011 0.03 0.009 0.005
O/ppmw Ti/ ppmw N/ ppmw B/ppmw  Nb/ppmw
330 80 120 10 10
HI/kJmm’' IT/ C PWHTT/ C  PWHTth Dr
1 250 20 0 0

ppmw: Part per million by weight

HI: Heat input IT: Interpass temperature
PWHTT: Post-weld heat treatment temperature
PWHTt: Post-weld heat treatment time

Dr.: A variable considering iron diffusion during post-weld heat treatment

The extrapolated results in Fig. 4.1 are dramatically different. With the first

model with y,,,,=357 J the limiting value at high temperature converges
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artificially to 4 - However, for the model with Y., =3570 J the
extrapolated maximum predicted value converges to nearly zero toughness..
This implies strongly that the selection of y,,,, plays a role in biasing during
modelling or during the undoing of double logarithms in the final step to
obtain toughness. The problem is that such a bias cannot be justified. Thus
using equation 4.1 was abandoned. An alternative to use y’' = Iny was also
excluded because it practically allows an infinite value of y,,,, which
cannot be justified either. In conclusion it was decided to use just the raw
toughness values as the output in all the modelling and to be careful in

interpreting the outputs.
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Fig. 4.1: Extrapolation results illustrating the influence of Y,y

800

on neural network

prediction. The prediction results (b) are plotted to a maximum of 400J because of the

huge value of the upper limits of uncertainty to a maximum of 1517J.
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2. Interpass temperature

Lots of predictions were explored to attempt to discover significant
phenomena worthy of careful study. Interesting relationships related with the
interpass temperature were found, based on the input conditions listed in
Table 4.2, extracted from Murugananth’s work (2002). They practically
correspond to the compositions of the 0.5Mn alloy and the 2Mn alloy of the

present thesis.

Table 4.2 Base input condition used for the neural network prediction. All elements

are in wt% unless otherwise specified (Murugananth, 2002).

C Si Mn S P Ni
0.025 0.37 0.65/2 0.006 0.013 6.6
Cr Mo A% Cu Co Y
0.21 0.4 0.011 0.03 0.009 0.005
O/ppmw Ti/ppmw N/ppmw B/ppmw  Nb/ppmw
380 80 180 1 10
HI/kJmm' IT/C PWHTT/ C PWHTt/h Dre TT/C
1 250 20 0 0 -60

The biggest physical effect of the interpass temperature during welding is
to influence the cooling rate. This can be seen from the Rosenthal equation

(Kurz, 1995):

T —To = ——exp{— 22} (4.2)

T 2mkr 2a

where T is local temperature due to a point source of power input P moving
at velocity v. T, is the far-field plate temperature which is equivalent to the
interpass temperature in this case. k is the thermal conductivity and a is the

thermal diffusivity. r is a polar co-ordinate measured from a reference frame
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attached to the moving heat source, related to the stationary frame by:

r=&+y2+22 (4.3)

where ¢ is a coordinate measuring the translation of the heat source, y and
z simply being coordinate axes orthogonal to . Thus the cooling rate is
expected to decrease as the interpass temperature increases (Lord, 1999).

This dependence of cooling rate on interpass temperature was confirmed by
the simulating system devised by Svensson et al. (1986). Table 4.3 shows the
cooling time between 800 C and 500 C for each interpass temperature. The
calculation was performed with 180 A, 34V and 0.004ms™ for arc voltage,

current and welding speed, respectively.

Table 4.3 Calculated cooling time between 800 C and 500 C (tgs) according to

interpass temperature (Svensson et al., 1986)

Interpass temperature (C) 100 200 300 400

tess (S) 11.7 16.6 26.3 53.1

As interpass temperature increases, the cooling time increases further,
which means drastic decrease of cooling rate. This matches well to the above
theory.

Lord (1999) reported that in a continuous cooling transformation (CCT)
diagram when the cooling curve of a weld metal crosses a C-shaped curve
between Ms and Bs at which the gradient of C curve is large, the small
variation of cooling rate by the uncontrolled interpass temperature can
drastically alter the transformation temperature and thereby the resultant
mechanical properties, especially the yield strength. The impact toughness,
however, was in his work suggested to be insensitive to the interpass

temperature in his concern.
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3. General results of modelling

A total of 50 sub-models was produced using different combinations of
hidden units and initial conditions for approaching the optimum weights. The
maximum number of hidden units was confined to 10 in order to avoid an
extensive computing time. Fig. 4.2 shows the evolution of the combined test
error with an increasing number of members in a committee of models. With

19 sub-models, the combined test error was minimized.

115 | o
11
10.5
10 -
9.5

Combined test error
1
X

9* x XXX XXXXXXXX

8‘5 T T 1

Number of models

Fig. 4.2: The evolution of combined test error that was minimized with 19 sub-models.

Fig. 4.3 shows the perceived significances of each of the input variables of
the best three models designated h4, il and hl. The significance of D,
calculated from the post-weld heat treatment temperature and time was as
expected. It was unexpected that the significance of chromium is relatively

high. It was therefore selected as one of the main variables in a later study.
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Fig. 4.3: Perceived significances of individual input variables

Finally the combined model was tested using the training and test data sets.
The uncertainty in both predictions varied between 28 J and 48 J. Fig. 4.4
illustrates the results in their normalized values. The performance based on
the test data does not differ critically from that of training data. This indicates
that the training and test data were divided properly before creating a sub-
model because a grouped dataset by related experiments can influence
modelling through bias.

To avoid confusion from nomenclature, the term “a model” henceforth

refers to the combined model rather than an individual sub-model.
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Fig. 4.4: Predicted and measured impact toughness
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4. Results and analyses

The influence of interpass temperature on impact toughness was studied as
a function of another selected input variable, for example, carbon, chromium,
manganese and nickel. Carbon is of course an important basic solute in the
steel, chromium for its large perceived significance (Fig. 4.3) and nickel and

manganese following Murugananth’s work (2002).

4.1 Effects of individual input variables

The effects of individual inputs on impact toughness were examined based
on the 0.5Mn composition (Fig. 4.5). While the selected inputs varied, the
other inputs were fixed to the values in Table. 4.2. As expected, increasing
carbon reduced the impact toughness because of its hardening effects.
Chromium doesn’t affect as much as carbon in spite of its large significance.
This emphasizes the fact that significance is a measure of correlation with the
input rather than the sensitivity of the output to that variable, rather as the
correlation coefficient in linear regression does not indicate the slope of the
line. Manganese and nickel exhibited their outstanding sensitivity on impact
toughness. Comparing carefully with the experimental results of Keehan et al.
(2006b), good agreement was found about the effect of carbon, manganese

and nickel.
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Fig. 4.5: Effect of individual inputs on impact toughness

Especially, the influence of interpass temperature was interesting.
Increasing interpass temperature to around 80 C deteriorated the impact
toughness (Fig. 4.5(¢)). Though the uncertainty is large at low interpass
temperature, this trend corresponds to the result of Lord’s work (1999) where
the impact toughness with the interpass temperature, 99 C was lower than

that with 38 C (Fig. 4.6).
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Fig. 4.6: Charpy impact data showing both average values (left) and scatter (right)
(Lord, 1999).

As a precaution, in Fig. 4.7, the predictions based on the Lord’s
composition (Table 4.4) were compared with the results of based on
Murugananth’s work (Table 4.2). The compositions of unspecified chemical
elements in Table 4.4 were used as the values in Table 4.2, however, the
composition of oxygen was set to 300 ppmw as a general value for manual

metal arc welding.
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Predicted impact toughness /J

Fig. 4.7: Predictions based on Lord’s composition

In Fig. 4.7 M and L represents the predictions based on Murugananth’s and
Lord’s composition, respectively. Even though the predictions based on
Lord’s data have big uncertainties, they reflected the general behaviour of the
experimental results of Fig. 4.6 and were consistent with the estimates based
on Muruganth’s composition. Thus the predictions by created model,

especially about interpass temperature, were found to be reliable.

Table 4.4 Chemical composition in Lord’s experiments (wt%) (Lord, 1999).
C Si Mn Ni Cr Mo Cu
0.05 0.30 2.0 3.0 0.45 0.6 0.0

4.2 Influence of interpass temperature

The influence of interpass temperature with the selected variables was
studied further by analyzing contour plots for predicted impact toughness. The
predictions were done using the listing in Table 4.2. In each prediction, while

two of the variables were varied, the others were fixed at values listed in
Table.4.2.
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4.2.1 Manganese

In Fig. 4.8, the reduction of impact toughness by increasing the interpass
temperature was observed in the low interpass temperature region, as
expected in Fig. 4.5(e). This was common in the predictions with other
variables.
The sensitivity of the impact toughness to the interpass temperature at 2 wt%
Mn was higher than that at 0.5 wt% Mn, however, it should be noticed that the
uncertainties at high manganese concentration exceeded the variation of the

impact toughness.
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Fig. 4.8: Influence of interpass temperature and manganese on the impact toughness.

(a) Predicted impact toughness. (b) Uncertainty (+ 1o)

66



4.2.2 Carbon and chromium

Interpass temperature influenced the impact toughness in a similar way for
carbon and chromium. Figs. 4.9 and 4.10 show the combined effects of
interpass temperature with two elements based on the 0.5Mn composition. As
already mentioned in the case of manganese, the increase at low interpass
temperature caused a deterioration of the impact toughness. Except for that
region, increasing interpass temperature enhanced impact toughness over the
whole range of composition considered.

It is particularly noticeable that for both cases, the contour plots in the
diagram are quite parallel. This implies that the interpass temperature interacts
with carbon and chromium in a consistent way.

Same analyses were applied to the plots based on the 2Mn composition.
Figs. 4.11 and 4.12 are the plots for carbon and chromium, respectively. As
expected they were not much different with those of the 0.5Mn composition
except for absolute value of impact toughness. However the small impact
toughness values of the 2Mn alloy was already expected from the work of

Keehan et al. (2006D).
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Fig. 4.9: Influence of interpass temperature and carbon on the impact toughness of the

0.5Mn composition. (a) Predicted impact toughness. (b) Uncertainty (+ 10)
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Fig. 4.10: Influence of interpass temperature and chromium on the impact toughness

of the 0.5Mn composition. (a) Predicted impact toughness. (b) Uncertainty (+ 10)
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Fig. 4.12: Influence of interpass temperature and chromium on impact toughness of

the 2Mn composition. (a) Predicted impact toughness. (b) Uncertainty (+ 10o)
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4.2.3 Nickel

The most interesting features were observed in the nickel versus interpass
temperature plots. The overall patterns of behaviour of interpass temperature
in the prediction for the 0.5Mn and the 2Mn composition looked similar, but
there were subtle differences.

The plot for the low nickel region of the 0.5Mn alloy is sensitive to the

nickel concentration. Therefore, increasing the interpass temperature produced
quite a large reduction in the impact toughness.
For nickel in excess of 6 wt%, increasing the interpass temperature improved
the impact toughness, however, it was less effective compared with the
variation at low nickel. This explains that at high solute concentrations, the
microstructure of the weld becomes less sensitive to the cooling rate.

In the intermediate region, around 5 wt%, the impact toughness was not
influenced by interpass temperature and nickel, becoming stable at a relatively
high value. These three regions can be distinguished roughly as marked on
Fig. 4.13 (a).

The plot based on the 2Mn composition also showed the characteristic
features but the intermediate region was shifted to lower concentrations
(Fig. 4.14). This is expected since the high concentration of manganese
enhances the hardenability of the alloy and hence the role of interpass

temperature diminishes.
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Fig. 4.13: Influence of the interpass temperature and nickel on the impact toughness

of the 0.5Mn composition. (a) Predicted impact toughness. (b) Uncertainty (+ 1o)

73



Predicted impact toughness / J

400 \
350—_ i3
3004 [°
0 250 '_23 33 33
- 1 Intermediate
150 -
100+ 3 igh
50 '/
| 13—
0 - T ; ; . ; . ; .
0 2 4 6 8 10
Ni / wt%
(a)
Uncertainty / J
400
350 36—
300+
B6
0 250 _
E 200—_
150
100 —_\3 5
50 T /
0 1 46— 51—5
0 2 4 6 8 10
Ni / wt%
(b)

Fig. 4.14: Influence of interpass temperature and nickel on the impact toughness of

the 2Mn composition. (a) Predicted impact toughness. (b) Uncertainty (= 10o)
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5. Discussion

The enhancement of impact toughness by increasing interpass temperature
is probably due to the evolution of softer microstructures which are
encouraged to form at low cooling rates. This could be applied to almost all
the situations studied. Some contradictions to this general behaviour were also
observed. For example, increasing interpass temperature to around 80 C led
to a deterioration of impact toughness. In spite of big uncertainties with the
predictions, this is worthy of further investigation with the experimental
results of Fig. 4.6 as evidence. Using microscopy and hardness data would be
useful in this context. If the prediction is true, it implies the existence of hard
but not brittle structures.

Assuming that the variation of mechanical properties comes from the C-
curve behaviour as reported by Lord (1999), the unique dependence of
interpass temperature on the nickel content is interesting since adding carbon,
chromium and nickel commonly retard the transformation of austenite
(Bhadeshia, 2001).

The explanation about nickel-interpass temperature plots (Figs. 4.13 and
4.14), nevertheless, was tried in Fig. 4.15, where the solid lines are
transformation curves and the dotted lines are cooling curves. With the low
manganese composition (0.5Mn), the lager sensitivity of impact toughness at
low nickel concentration can be explained by the variation of transformation
temperature on the C-shape curve. On the other hand the relative insensitivity
at high nickel corresponds to the invariance of transformation temperature.
Adding manganese (2Mn) causes an increase of hardenability, thus pushing
the transformation curve to longer times. This exactly corresponds to the shift
of characteristic regions of the 0.5Mn nickel-interpass temperature plot to

lower nickel.
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Fig. 4.15: Schematic diagram illustrating the effect of alloying solutes and interpass

temperature on transformation temperature.

Actually, such a shift could be expected from the interaction of nickel-
manganese in Fig. 4.16, where it shows that the high impact toughness can be
obtained by the combination of low nickel and high manganese (2wt% Mn)
or high nickel and low manganese (0.5 wt% Mn). This corresponds to the shift
of intermediate region to left comparing Fig. 4.14 with Fig. 4.13.
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Fig. 4.16: Influence of manganese and nickel on the impact toughness (a) Predicted

impact toughness. (b) Uncertainty (+ 10)
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6. Conclusions

It was discovered that double logarithms used to represent and bound the
output form leads to unjustified bias in the modelling, so this method was not
used in this work. Increasing interpass temperature can reduce impact
toughness in some conditions. It is interesting that unique domains were
identified in the nickel-interpass temperature plots, which were not typical in

similar plots involving carbon, chromium and manganese.
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V. Coalesced bainite

The main aim of the work presented in this chapter is to develop an
understanding of the formation of coalesced bainite. Isothermal
transformations were conducted at several temperatures above Ms to generate
coalesced bainite in reheated weld deposits. The Bs temperatures of each alloy
sample were measured from dilatometric data to study the effect of the

difference between Bs and Ms as reported (Keehan et al., 2006a).

1. The bainite-start temperature

The growth of bainite requires that the transformation occurs at a
temperature below Ty, when the free energy of bainite becomes equal to that
of austenite of the same composition (Bhadeshia, 2001). Thus its growth can
only occur if the carbon concentration of the austenite lies to the left of the T,
curve on a plot of temperature versus carbon concentration. Since bainite
formation involves the partitioning of carbon into the retained austenite
following diffusionless growth, when the carbon concentration of austenite
reaches the T} curve, the reaction stops. Fig. 5.1 illustrates that the amount of
carbon that can be tolerated by the austenite before the bainite reaction stops,

increases as the temperature decreases.
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Fig. 5.1: Schematic diagram illustrating the degree of bainite transformation as
temperature decreases. X is the average carbon concentration of the state, T’y is the
To curve adjusted for the stored energy of bainite and Ay is the a+y/¥y
paraequilibrium phase boundary (Bhadeshia, 2001).

Since the total amount of partitioned carbon is related with the degree of
transformation to bainite, greater undercoolings allow more bainite to form. In
other words, the temperature where no transformation occurs corresponds to
the bainite-start temperature (Bs). The overall phenomenon just described is
known as the “incomplete reaction phenomenon”. The reaction stops before
paraequilibrium is reached (Bhadeshia, 2001).

In the present work, the degree of transformation to bainite was measured
using dilatometry. As expected, Fig. 5.2 shows that strain due to
transformation increased as the transformation temperature is reduced. This,
of course, is consistent with the incomplete reaction phenomenon. The
retardation of transformation in high manganese sample due to the

corresponding increase in the stability of the austenite was also confirmed.
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Fig. 5.2: Length changes observed during isothermal transformation at a variety of

temperatures (a) the 2Mn alloy (b) the 0.5Mn alloy. Notice that the reaction is much

slower with the 2Mn alloy.
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Assuming that the maximum length change depends linearly on
undercooling as illustrated in Fig. 5.1, the Bs temperatures were estimated as

illustrated in Fig. 5.3.
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Fig. 5.3: Estimation of Bs of each alloy (a) the 2Mn alloy (b) the 0.5Mn alloy. AL/L is

the measured transformation strain.

The Bs temperature was estimated as 393 C £11.1 C for the 2Mn alloy

and as 498 C £33.8 C for the 0.5Mn alloy with 95 % confidence.
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2. Coalesced bainite
2.1 The 2Mn alloy

Field emission gun scanning electron microscopy (FEGSEM) was used to
identify and characterize the microstructures, with a particular emphasis on
the so-called coalesced bainite. Fig. 5.4 shows the FEGSEM micrographs of
the 2Mn alloy samples which were transformed at 360, 370, 385 and 395 C,
respectively. The ‘B¢’ in the micrographs represents coalesced bainite and the
temperature and time under each micrograph correspond to the set

temperature and time.
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(d)395 C 7h

Fig. 5.4: FESEM micrographs of coalesced bainite formed at different temperatures in
the 2Mn alloy
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Coalesced constituents were observed at all temperatures and their
morphology corresponds with that reported in the literature (Keehan, 2006a).
Thus the marked constituents in each micrograph were identified as coalesced
bainite. The overall views of each micrograph indicate that as the temperature
increases, the occupancy by the characteristic “indented” regions associated
with coalesced bainite decreases. Thus coalescence is likely to be suppressed
at high temperatures.

It is noticeable that coalesced bainite was observed not only at the austenite
grain boundaries but also inside the grains, probably nucleated from
nonmetallic particles present in the weld deposit (Fig. 5.4 (a), (d)).

There was an interesting results observed by chance. During an isothermal
transformation experiment at 370 C, the dilatometer switched off suddenly.
Fig. 5.5 is the incomplete length change curve from that experiment. It
doesn’t show a full S-curve and comparing the scale of time and length
change with those of Fig. 5.2, the experiment stopped at a very early stage of
transformation. It is surprising that the coalesced bainite was also found in
this sample (Fig. 5.6). This supports the hypothesis by Chang and Bhadeshia
(1996), which is that coalesced bainite forms at the early stages of
transformation. However, the forming of coalesced bainite would be expected
to continue because the overall degree of coalescence was low compared with

that of Fig. 5.4(b).
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Fig. 5.5: Incomplete length change curve by isothermal transformation at 370 C

Fig. 5.6: Coalesced bainite formed by incomplete isothermal transformation at 370 C

in the 2Mn alloy
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2.2 The 0.5Mn alloy

The FEGSEM micrographs of samples transformed at 380, 390 and 400 C
were studied. Those for the other temperatures will be obtained in the future.
It should be interesting to compare the microstructures formed at 360 C for
the 2Mn alloy with those formed at 480 C for the 0.5Mn alloy since they
have comparable maximum length change (Fig. 5.2), corresponding to a
similar driving force for transformation.

The isothermal transformation at 380 C was found not to be truly
isothermal. In normal isothermal transformation, the rate at which the length
changes as a function of temperature should be constant during the cooling of
austenite. However, that curve in Fig. 5.7 exhibited an additional length
change before the required temperature of 380 C was reached. Using the
offset method (Yang and Bhadeshia, 2007), the transformation was found to
begin at 422 C = 1 T. Since this temperature is between the Ms
(404 C £19 C) and Bs (498 C =+ 33.8 T) of the 0.5Mn alloy, the
unintended reaction corresponds to bainite formation. One interest thing is
that the coalesced bainite is also observed in this sample (Fig. 5.8). It is not
certain that this coalesced bainite formed at 422 C; however, the
circumstances are favourable for the development of coalesced bainite
because the driving force increases as the sample cools further toward Ms,

making it likely that coalescence occurs.
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Fig. 5.7: Dilatometric curve designed for isotheral transformation at 380 C

Fig. 5.8: Coalesced bainite in a sample designed for isothermal transformation at 380 C

in the 0.5Mn alloy. However, some transformation preceded the set temperature.
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Coalesced bainite was also found in a sample (Fig. 5.10) which was
designed for isothermal transformation at 390 C however, the experiment
was stopped before the maximum length change was obtained (Fig. 5.9) so

their data are excluded from Fig. 5.2(b).

Fig. 5.10, nevertheless, indicates important facts about the evolution of
coalesced bainite. Metallography showed various arrangements of coalesced

bainite forming from the merger of parallel plates (Fig. 5.10).
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Fig. 5.9: Incomplete length change curve by isothermal transformation at 390 C.
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Fig. 5.10: Coalesced bainite in a sample designed for isothermal transformation at

390 C in the 0.5Mn alloy.

Fig. 5.11: Coalesced bainite in a sample transformed isothermally at 400 C in the

0.5Mn alloy.
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Fig. 5.11 is the FEGSEM micrograph of the sample which was isothermally
transformed at 400 C, showing coalesced bainite. Unfortunately the extent of
coalescence could not be compared with that of the 2Mn alloy because there

is no curve in the latter case which has a comparable maximum length change.

2.3 Uncertain constituents

Fig. 5.12 shows some constituents which were difficult to unambiguously
classify. The morphology looks like that of coalesced bainite; however, there
is structure within the apparently coarse grain in the form of finely separated
lines, identified by an arrow in Fig. 5.12. The features have not yet been
identified. The regions between the traces are about 0.2 micrometers in
thickness, so it is conceivable that there are the component plates of a
coalesced structure. This is reasonable for the transformation temperature
(360 C in the 2Mn alloy and 380 C in the 0.5Mn alloy), so assuming that
the traces do not correspond to austenite films, the coarser structure could be
classified as coalesced bainite. After coalescence, there could be some low-
misorientation boundaries left inside. However if the traces are thin austenite
films, then the constituent should be classified as a packets of parallel bainite

plates.
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(b) 0.5Mn 380 C

Fig. 5.12: Uncertain constituents those have internal traces.
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3. Conclusions

Microscopy of samples isothermally transformed in the range between the
bainite and martensite-start temperatures revealed the formation of coalesced
bainite in reheated weld deposits. There seemed to be a greater tendency to
form coalesced bainite at low temperatures, as expected from Chang and
Bhadeshia’s work (1996).

Coalesced bainite was observed not only at austenite grain surfaces but also
occurred intragranularly. It has been confirmed that coalesced bainite occurs
at the early stages of transformation.

Some constituents could not be unambiguously identified because although
the overall appearance was consistent with that of coarse plates, there were
fine parallel traces within the grain which could not be resolved. It will be
necessary to conduct transmission electron microscopy to further characterise

the detail.
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VI. Summary and future work

The modelling of impact toughness for weld metal using a neural network
method and the observation of coalesced bainite have been studied in detail.

In the modelling work, it was found that the logarithmic form of the output
could cause an unjustified bias so the method was rejected. In subsequent
predictions, it was discovered that increasing the interpass temperature can
reduce the impact toughness when the former is below about 80 C. Above
that temperature the impact energy can increase as the interpass temperature is
increased. There were interesting pattern of impact toughness in the plots of
interpass temperature versus nickel which could be understood in terms of
hardenability.

About coalesced bainite, there seemed to be a greater tendency to form
coalesced bainite at low transformation temperatures. Coalesced bainite was
observed not only at the austenite grain surfaces but also occurred
intragranularly. It has been confirmed that as expected theoretically, coalesced

bainite occurs at the early stages of transformation.

During this work, neural network modelling was focused on only impact
toughness of weld metal. However, the other mechanical properties of weld
metal, for example, yield strength, ultimate tensile strength or elongation are
also challenging issues. Thus collecting data about them and creating many
models for such mechanical properties should be continued. The ultimate aim
is also to discover phenomena involving with the dramatic variation of such

mechanical properties and to figure out their metallurgy.

For the work about coalesced bainite, the analyses using transmission
electron microscope (TEM) and electron backscatter diffraction (EBSD) will
be worthy for quantitative study for coalesced bainite. It will be especially
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interesting to use confocal scanning laser microscopy (CSLM) to conduct
real-time observations of the forming of coalesced bainite.

The study about the effect of coalesced bainite on mechanical properties is
also important. The influence of not only the big size of the constituents but
also the inhomogeneous distribution of their sizes is probably an interesting

issue.
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Appendix A

Program MAP_STEEL_WELD_CHARPY
This appendix presents the model described in Chapter 4 and associated
documentation following in MAP format.

http://www.msm.cam.ac.uk/map/mapmain.html.

1. Provenance of Source Code

Junhak Pak, March 2007, junhark@postech.ac.kr
Computational Metallurgy Laboratory,

Graduate Institute of Ferrous Technology,
POSTECH, Pohang, Korea.

The neural network program was produced by:
David MacKay,

Cavendish Laboratory, University of Cambridge,
Madingley Road, Cambridge, CB3 OHE, U.K.

2. Purpose

To estimate Charpy toughness of steel weld metal (manual metal arc,
submerged arc, gas metal arc and gas tungsten arc), as a function of chemical
composition, heat input, interpass temperature, post-weld heat treatment

temperature and time, a variable for iron diffusion and test temperature.

3. Specification
Language: executables, C
Product form: executables

4. Description
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A program which can be used for predicting Charpy toughness of weld metal
(manual metal arc, submerged arc, gas metal arc and gas tungsten arc). The
input variables required to run the program are chemical composition, heat
input, interpass temperature, post-weld heat treatment temperature and time, a
variable for iron diffusion and test temperature for Charpy test. The model is
in fact a committee of nineteen models.

The downloadable package contains the following files and subdirectories

(details may differ between LINUX and PC versions):

MINMAX
A text file containing the minimum and maximum limits of each input
and output variable. This file is used to normalise and unnormalise the
input and output data.

test.dat
An input text file containing the input variables used for predictions.

model.gen or model.exe
This is a unix shell file containing the command steps required to run
the module. It can be executed by typing csh model.gen at the
command prompt. This shell file compiles and runs all the programs
necessary for normalising the input data, executing the network for
each model, unnormalising the output data and combining the results
of each model to produce the final committee result.

spec.tl
A dynamic file, created by spec.ex, which contains information about
the module and the number of data items being supplied. It is read by
the program generate44.

norm_test.in
This is a text file which contains the normalised input variables. It is

generated by the program normtest.for in subdirectory s.
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generate44
This is the executable file for the neural network program. It reads the
normalised input data file, norm_test.in, and uses the weight files in
subdirectory €. The results are written to the temporary output file
_out.

_ot, _out, res, sen
These files are created by generate44 and can be deleted.

Result
Contains the final un-normalised committee results for the predicted
hardness.

SUBDIRECTORY s

spec.c
The source code for program Spec.ex.

normtest.for
Program to normalise the data in test.dat and produce the normalised
input file norm_test.in. It makes use of information read in from
no_of rows.dat and committee.dat.

gencom.for
This program uses the information in committee.dat and combines
the predictions from the individual models, in subdirectory outprdt,
to obtain an averaged value (committee prediction). The output (in
normalised form) is written to com.dat.

treatout.for
Program to un-normalise the committee results in com.dat and write
the output predictions to unnorm_com. This file is then renamed
Result.

committee.dat
A text file containing the number of models to be used to form the

committee result and the number of input variables. It is read by
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gencom.for, normtest.for and treatout.for.
SUBDIRECTORY ¢

_Wif
The weights files for the different models.

«lu
Files containing information for calculating the size of the error bars
for the different models.

_C*
Files containing information about the perceived significance value
(MacKay, 1997) for each model.

R«

Files containing values for the noise, test error and log predictive
error (MacKay, 1997) for each model.

SUBDIRECTORY d

outran.x
A normalised output file which was created when developing the
model. It is accessed by generate44 via spec.tl.

SUBDIRECTORY outprdt

outl, out? etc.
The normalised output files for each model.

com.dat
The normalised output file containing the committee results. It is
generated by gencom.for.

Read me.text

Instructions for running the program.

5. References
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