Transformation Plasticity in Steel Welds

RECONSTRUCTIVE

Diffusion of all atoms during nucleation and growth. Sluggish below about 850 K.

ALLOTRIOMORPHIC FERRITE

IDIOMORPHIC FERRITE

MASSIVE FERRITE

No change in bulk composition.

PEARLITE

Cooperative growth of ferrite & cementite.

DISPLACIVE

Invariant-plane strain shape deformation with large shear component.

No iron or substitutional solute diffusion. Thin plate shape.

WIDMANSTÄTTEN FERRITE

Carbon diffusion during paraequilibrium nucleation & growth.

BAINITE & ACICULAR FERRITE

Carbon diffusion during paraequilibrium nucleation. No diffusion during growth.

MARTENSITE

Diffusionless nucleation & growth.

Watson and McDougall

possible elongation of 15%

Lower bainite, transformed with and without stress

$$\Delta G_{MECH} = \tau s + \sigma_N \delta$$

Jones & Alberry, 1977

C / wt.%	Si	Mn	Ni	Мо	Cr	ΔT / °C	$ heta^\circ$
0.06	0.5	0.9	_	_	_	802-400	14.5
0.06	0.3	1.6	1.7	0.4	0.35	422 – 350	8

C / wt.%	Si	Mn	Ni	Mo	\mathbf{Cr}	M_S / $^{\circ}\mathrm{C}$
0.10	0.39	0.90				590
0.025	0.32	0.70	10.0	0.13	10.0	180

Ohta et al., 2000-2003

Murugananth & Bhadeshia

Keehan, Karlsson, Andrén, Bhadeshia, Science & Techn. Welding & Joining 11 (2006) 9-18

Alloy	С	Si	Mn	Cr	Ni	Мо
OK 75.78	0.05	0.19	2.01	0.41	3.14	0.63
В	0.03	0.65	0.5	1	12	0.5
\mathbf{C}	0.045	0.4	0.5	0.4	14	0.4
LTTE3	0.07	0.2	1.25	9.1	8.5	

316 austenitic stainless steel

Transformation strain 24 variants of martensite per austenite grain Variant selection

Habit plane \mathbf{p}_{γ}

$$\begin{pmatrix} -0.168640 \\ -0.760394 \\ -0.627185 \end{pmatrix}$$

Orientation ($\gamma J \alpha$)

$$\begin{pmatrix} 0.575191 & 0.542067 & 0.097283 \\ -0.550660 & 0.568276 & 0.089338 \\ -0.008610 & -0.131800 & 0.785302 \end{pmatrix}$$

$$[\bar{1} \ 0 \ 1]_{\gamma}||[-0.920611 \ -1.062637 \ 1.084959]_{\alpha'}$$

 $(1 \ 1 \ 1)_{\gamma}||(0.015921 \ 0.978543 \ 0.971923)_{\alpha'}$

Shape change $(\gamma P \gamma)$

$$\begin{pmatrix} 0.992654 & -0.033124 & -0.027321 \\ 0.026378 & 1.118936 & 0.098100 \\ -0.027321 & -0.123190 & 0.898391 \end{pmatrix}$$

$$\mathbf{v} = \mathbf{P}\Delta\mathbf{u} + (\mathbf{u} - \Delta\mathbf{u})$$

$$\mathbf{v} = \sum_{k=1}^{n} \sum_{j=1}^{24} \mathbf{P}_{j}^{k} \Delta \mathbf{u}_{j}^{k} + \left(\mathbf{u} - \sum_{k=1}^{n} \sum_{j=1}^{24} \Delta \mathbf{u}_{j}^{k} \right)$$

Goss Cube

Experimental

Calculated

Calculated

Kundu and Bhadeshia, Scripta Materialia 55 (2006) 779

Experimental

Calculated

Calculated

Kundu, Hase, Bhadeshia, Proc. Roy. Soc. 2007

$\Delta G = \Delta G_{CHEM} + \Delta G_{MECH}$

