
Chapter 5

Barkhausen Noise Modelling

5.1 Existing models of hysteresis and Barkhausen

noise

5.1.1 Jiles-Atherton model

Jiles and Atherton (1983) used an energy balance to model magnetic hystere-

sis. The energy supplied to the material by a change in applied field can be

dissipated either as a change in magnetostatic energy, or as hysteresis loss.

In the absence of hysteresis, all the energy supplied would go toward

modifying the magnetostatic energy. In such a case, the magnetisation would

be a reversible, single-valued function of the applied field. This anhysteretic

magnetisation Man can be modelled as:

Man = MSf{He} (5.1)

where MS is the saturation magnetisation, He = H +αM is the Weiss mean

field (Equation 3.1) and f is an arbitrary function with the properties:

f = 0 when He = 0
f → 1 when He → ∞ (5.2)

A modified Langevin expression (Langevin, 1905) was used to model Man:

Man{He} = MS

[

coth
{

He

a

}

−
(

a

He

)]

(5.3)

where a is a parameter with units of field.
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The energy supplied Esupp can therefore be expressed in terms of Man:

Esupp = µ0

∫

Man{H}dH (5.4)

Hysteresis loss was attributed to domain wall pinning by sites distributed

at random, all of which had the same pinning energy for 180◦ walls, < επ >.

For other domain wall angles θ, the pinning energy < εpin > is:

< εpin >=
1

2
< επ > (1 − cos θ) (5.5)

For an average pinning site density per unit volume n, the total energy

dissipated against pinning Epin when a domain wall of area A sweeps out

a distance x between domains at an angle θ to one another is:

Epin{x} =
∫ x

0

n < εpin >

2m
(1 − cos θ)Adx (5.6)

where m is the magnetic moment of a typical domain. This gives a net

change in magnetisation dM :

dM = m(1 − cos θ)Adx (5.7)

Hence Epin can be expressed in terms of M :

Epin{M} =
n < εpin >

2m

∫ M

0
dM (5.8)

The constant n < εpin > /2m was termed the pinning parameter k.

Equating Esupp with the sum of Epin and the magnetostatic energy due to

the change in magnetisation dM gives:

dM

dH
=

Man{H} − M{H}
k

(5.9)

A subsequent modification allowed for reversible magnetisation Mrev, assum-

ing wall-bowing in the direction tending to reduce the difference between the

actual magnetisation M and Man:

Mrev = c(Man − M) (5.10)

where c is a constant. The final equation is then given by:
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dM

dH
=

Man(H) − Mirr(H)

(kδ/µ0) − α(Man(H) − Mirr(H))
+ c

(

dMan

dH
− dM

dH

)

(5.11)

where Mirr is the irreversible component of magnetisation and δ is a param-

eter inserted to account for the direction of field increase:

δ = +1 for dH/dt > 0
δ = −1 for dH/dt < 0

(5.12)

Hysteresis can therefore be expressed in terms of five constants: α, a, MS, c

and k. Jiles and Atherton later modified k so that it had the same dimensions

as HC :

k =
n < εpin >

2mµ0

(5.13)

Extensions have been made to this model to allow the modelling of minor

loops (Jiles and Atherton, 1984; Carpenter, 1991), and the effects of magne-

tocrystalline anisotropy (Ramesh et al., 1996, 1997) and crystal texture (Shi

et al., 1998). Methodologies for the extraction of modelling parameters from

experimental data have also been developed (e.g. Jiles et al., 1992; Del Moral

Hernandez et al., 2000).

5.1.2 Preisach model

An earlier model by Preisach (1935) considered a magnetic material as an

assemblage of particles, each of which could be in one of two magnetisation

states. The particle switches between these states at particular field values.

If the particle were isolated, its hysteresis loop would be symmetrical, but

interactions with other particles with different switching fields shifts the loop

along the H axis. The overall behaviour of the material is modelled using

a Preisach distribution function, which is a statistical representation of the

number of domains switching their states as the applied field is changed. This

model is widely used for the magnetic properties of recording media (Jiles,

1998) and has been the subject of many developments and modifications

since its introduction.
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5.1.3 Equivalence of models and relationship to mi-
crostructure

Dupré et al. (1999) identified the relationships between modelling parame-

ters in the Jiles-Atherton and Preisach models. Pasquale et al. (1999) also

demonstrated that the two formulations were equivalent and found simple

relationships between the Jiles-Atherton parameter k and the grain size in

nonoriented silicon steel, and between k and other material parameters in a

metallic glass. Further work has demonstrated that the Jiles-Atherton pa-

rameters k and a are affected by the grain diameter dg and dislocation density

ρd:

k = k0

(

G1 + G2

dg

)√
ρd

a = a0

(

G1 + G2

dg

)√
ρd

(5.14)

where k0, a0, G1 and G2 are constants (Sablik, 2001). The rationale behind

this formulation was that k, being a measure of the hysteresis loop width, was

proportional to the coercive field, which was found from a survey of previous

work to depend on the reciprocal of the grain size and the square root of

dislocation density. The parameter a was found by Sablik and Jiles (1993)

to be proportional to the domain density in the demagnetised state, which

should be proportional to the pinning site density and hence to k. Numerical

experiments, using values obtained from previous experimental work and the

dependencies in Equation 5.14, were performed by Dupré et al. (2002) to

investigate the variation of the Preisach model parameters on dislocation

density and grain size. It appears that, so far, there has been no work on the

effects of particles on modelling parameters.

5.1.4 Alessandro, Beatrice, Bertotti and Montorsi
(ABBM) model

Alessandro et al. (1990a) developed a model for BN based on stochastic fluc-

tuations in the coercivity, initially considering a single, planar 180◦ domain

wall. Williams, Shockley and Kittel (1950) showed that, for macroscopic do-

main wall movement, the wall velocity v was proportional to the difference
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between the field acting on the wall H and the coercive field HC :

kv = H − HC (5.15)

where k is a constant characterising eddy current damping. Alessandro et al.

assumed that this relationship was also valid for local fluctuations of HC on

a microstructural scale.

The rate of change of magnetic flux Φ̇ is related to the domain wall

velocity v by the equation:

Φ̇ = 2µ0MSdv (5.16)

where MS is the saturation magnetisation. Thus,

σGΦ̇ = H − HC (5.17)

where σ is the electrical conductivity and G is a dimensionless coefficient.

The correlation length ξ characterises the range over which a domain

wall interacts with a perturbation. The HC fluctuations were modelled by

considering HC as a random function of domain wall position, and hence of

Φ:

dHC

dΦ
+

HC− < HC >

ξ
=

dW

dΦ
(5.18)

where

< dW >= 0, < |dW |2 >= 2AdΦ (5.19)

and A is an unknown constant. The term W represents noise, leading to

stochastic fluctuations in HC , and A characterises the amplitude of these

fluctuations.

The magnetic field H experienced by the domain wall depends on both

the applied field and the demagnetising field Hd. Because of the difficulty of

determining Hd exactly, Alessandro et al. restricted the model to regions in

which the differential permeability was constant.
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Using this basis, models for the pulse amplitude distribution and the

power spectrum (i.e. Fourier transform) of BN were obtained by applying

the theory developed for a single domain wall to the movement of an as-

semblage of walls. These models agreed reasonably well with experimental

measurements of BN from nonoriented Fe-3 wt. % Si within the constant

differential permeability regime (Alessandro et al., 1990b).

5.1.5 Extensions to ABBM

Potential energy model

McMichael et al. (1993) used ABBM concepts in a BN model for the whole

hysteresis loop. Domain walls were assumed to be rigid and planar. The

energy per unit area E of a domain wall element under an applied field H is

given by:

E = −2MSHx + Edw{x} (5.20)

where x is the domain wall position measured normal to the wall area, MS is

the saturation magnetisation, and Edw{x} is the domain wall energy per unit

area as a function of its position. The force F on the wall is the derivative

of its energy with respect to position:

F =
∂E

∂x
= 2MSH − ∂Edw{x}

∂x
(5.21)

Normalised variables f = F/2MS and HC{x} = (1/2MS)(∂Edw{x}/∂x)

were used, and the domain wall was considered to move in a positive direction

for f > 0 [H > HC{x}] and in a negative direction for f < 0 [H < HC{x}].
For f = 0 the wall was in a position of equilibrium, but this was only stable

for dHC/dx > 0, i.e. a minimum-energy position.

The combined effect of movements of N domain walls contributes to the

magnetisation M :

M =
1

N

N
∑

i=1

Aixi (5.22)

where Ai and xi are the area and position of the ith wall element.
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The fluctuations in hci{xi} are modelled in a similar form to the ABBM

model (Equation 5.18):

dhci

dxi

=
hci

ξ
+

dW

dxi

(5.23)

where, as in Equation 5.18, ξ represents a correlation length and W a noise

term with < dWi >= 0, < |dWi|2 >= 2Bdxi, B characterising the size of

fluctuations in hci. In this model, the field H is obtained from:

H = Ha − NdM (5.24)

where M is magnetisation given by Equation 5.22, Ha is the applied field

and Nd is the demagnetising factor.

Combination with Jiles-Atherton

Jiles et al. (1993) started, instead, from the rate of change of magnetisation

Ṁ , which was kept constant in the original ABBM model:

Ṁ =

(

dM

dH

)(

dH

dt

)

= χ′Ḣ (5.25)

where χ′ is the differential susceptibility.

The BN jump sum MJS is the product of the number of BN events N

and average event size < Mdisc >. The rate of change of MJS with time was

assumed to be proportional to Ṁ :

dMJS

dt
∝ χ′Ḣ (5.26)

Assuming that the average BN jump size < Mdisc > remains constant

throughout, and expressing the number of events per unit change of mag-

netisation as N ′{tn} = dN{tn}/dM , the rate of change of MJS with time

was modelled as:

dMJS{tn}
dt

∝ χ′
[

N ′{tn−1} + δrand

√

N ′{tn−1}
]

(5.27)

where δrand is a random number between −1 and +1. Predictions of BN

signals were made by combining this model with the Jiles-Atherton model
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predictions of χ′. In a later modification, Lee et al. (2001) proposed that

the anhysteretic differential susceptibility dMan/dH should be used instead

of dM/dH.

Variations in average coercive field

In Equation 5.18, the average coercive field < HC > is constant. Clatterbuck

et al. (2000) proposed that the restriction of ABBM to constant applied fields

could be relieved by varying this average as a function of position on the

hysteresis loop. The magnetisation then sweeps out a hysteresis loop whose

behaviour, over a large number of cycles, is close to the average behaviour,

but whose fine structure varies from one cycle to the next because of the

random noise component. By varying the parameters ξ and A, this model

could be fitted well to experimental BN data from nickel.

5.1.6 Relationships between ABBM parameters and
real data

Recent work has investigated relationships between fitting parameters and

microstructural data. Lee et al. (2001) measured hysteresis loops and BN

from Fe-0.05 wt. % C. The Jiles-Atherton model parameters were obtained

by fitting the hysteresis loop, and substituted into an ABBM-type model.

This allowed good replication of the noise peak position by the model.

Ferritic-pearlitic steels with a variety of carbon contents have also been

investigated in the same way (Lo et al., 2002). By adjusting the model

parameters ξ and A, it was found that ξ had a strong effect on the simulated

pulse height distributions, while A influenced them only weakly. A was held

constant and ξ fitted to the experimental data, giving a relationship:

ξ = C1VF dF + C2VP dP (5.28)

where VF and VP are the volume fractions of ferrite and pearlite, and DF

and DP the ferrite and pearlite grain sizes, respectively, and C1 and C2 are

constants. This simple combination of ferrite and pearlite effects is similar

to Equation 4.1.
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According to this relationship, the range ξ over which a domain wall

interacts with a pinning site depends on the sizes of the grains. Lo et al.

state that the interaction range is related to the displacement of the wall

between pinning sites. There seems to have been a subtle change in the

meaning of the term ξ since the original paper by Alessandro et al. (1990a);

it was then regarded as the range of influence of a pinning site, but Lo et al.

consider it more as a ‘mean free path’ between sites. These differences can

be reconciled if it is considered that the wall is always within the range of

influence of one site or another. This may well be the case in a material with

a high defect density such as ferritic-pearlitic steel.

5.1.7 Microstructure-based modelling

Sakamoto et al. (1987) modelled the effect of grain size and particle distribu-

tions on the RMS Barkhausen noise. It was assumed that all BN pulses had

the same duration 2σ and that the time interval between successive pulses τ

was also constant. The RMS noise was modelled as:

RMS = CR · τ 2

σ2
(5.29)

where

CR =
1

8
√

2πHmax

(

dH

dt

)

(N · ∆Φ) (5.30)

and Hmax, dH/dt, N and ∆Φ are the maximum applied field, the rate of

change of field, the number of pulses per unit cross-sectional area and the

magnetic flux change respectively.

Expressions for the RMS noise in terms of the microstructure were derived

by assuming that the majority of noise originated from domain nucleation

and growth.

Grain boundaries

Assuming that the nucleation of a domain wall at a grain boundary, and its

propagation across to the opposite side of the grain, produced a single noise

pulse of duration 2σ,
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σ = dg/2v̄ (5.31)

where dg is the grain diameter and v̄ the average wall velocity.

By combining previous results from Döring (1938), Williams (1950), Na-

gashima (1959), Bloor and Martin (1959) and Carey (1960), an expression

for the RMS voltage was derived in terms of grain size dg and a grain-size-

independent term Cg:

RMS = Cgd
−1/2
g (5.32)

Particle distributions

In the case of a ferrite microstructure containing cementite particles, after

nucleating at the grain boundaries, the domain walls would encounter the

particles and be pinned. For a pulse of duration 2σ, in this case:

σ =
s̄

2CvHp

(5.33)

where s̄ is the domain wall mean free path, Cv is a proportionality constant

and Hp is the pinning field. s̄ was approximated to dp/α
1/3, where dp is the

cementite particle diameter and α the volume fraction of particles. Hp was

obtained from an expression due to Kersten (1943):

Hp = 2.5

(

K

µ0MS

)(

δ

dp

)

α2/3 (5.34)

where δ is the domain wall width and K the anisotropy constant.

The number of pulses N was equated to the number of cementite particles

per unit area, 6α/πd3
p, giving a value for τ :

τ =
πttotal

6

d3
p

α
(5.35)

so that the RMS voltage is given by:

RMS = Cpd
2
p (5.36)

where, as above, the term Cp is independent of the particle diameter dp.
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Good agreement with experiment was obtained for the dependence of the

RMS noise on dg in ferrite without cementite. In an alloy containing particles,

the experimental data agreed with Equation 5.36 for particles smaller than

1 µm in diameter, but broke down when they were larger than this. It is

likely that this is due to the dominance of the magnetostatic pinning effect

and the formation of spikes when particles are larger (§ 3.3.1).

5.1.8 Models for power plant steels

Domain nucleation and growth

Kameda and Ranjan (1987a) considered that the magnetic BN signal inten-

sity was proportional to dB/dt and the effective surface skin area A from

which noise originated. B was expressed as:

B = λ
[

βnNn +
(

s̄

δw

)

Ng

]

(5.37)

where λ is a coefficient related to the atomic magnetic moment, βn a co-

efficient related to the spike shape of nucleated domains, Nn the density of

nucleated walls, s̄ the average displacement of growing domains, δw the do-

main wall thickness and Ng the density of propagating domain walls. The

first term describes domain nucleation, and the second, domain growth.

Kameda and Ranjan predicted that dNn/dH would be a maximum as

the field was reduced from saturation and the nucleation of domains allowed

a reduction in magnetostatic energy. dNg/dH was believed to have a more

complex form, with two maxima and two minima, and a smaller maximum

amplitude than dNn/dH. They considered that the BN behaviour would be

dominated by nucleation when the number of defects was large, for example

in a power plant steel after quenching. Reducing the density of defects would

give a larger mean free path s̄, allowing domain growth to become significant.

This interpretation was used to explain the change from a single to a double

peak on tempering martensitic steel.
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Moorthy et al. interpretation

The alternative interpretation of power plant steel BN data, by Moorthy

et al. (1997b, 1998, 2000) was introduced in § 4.7.3. Pinning sites due to

grain boundaries were considered to have a distribution of strengths with a

width ∆Hgb and average value H̄gb, and pinning sites due to carbide particles

could likewise be described by ∆Hcp and H̄cp. Magnetisation was described

as a two-stage process: firstly, the domain walls nucleated at, and became

unpinned from, the grain boundaries and were pinned by the carbides, and

secondly, they were unpinned from the carbides. The two sets of unpinning

events were each associated with a peak in BN emission.

5.1.9 Summary

It has been seen that there are several modelling strategies for magnetic

hysteresis and BN:

1. Use of an energy balance to model hysteresis, with a single parameter

to characterise pinning strength.

2. Preisach-type models using distributions of subunits, each of which can

adopt one of two states.

3. Models based on stochastic fluctuations in local coercive field, charac-

terised by their amplitude and interaction range.

4. Quantitative microstructural interpretations based on the effect of fea-

ture spacing on jump sizes.

5. Considerations of the probability of domain nucleation and growth.

6. Qualitative microstructural interpretations based on distributions of

pinning site strengths due to grain boundaries and carbides.

If, as is suggested by Moorthy et al., both grain boundary and carbide

particle pinning sites play a part in the overall BN behaviour, it is possible

that models of types 1 and 3 will not be able to accommodate the complexity

– 106 –



Chapter 5 Modelling

of the problem without the introduction of, for example, a second k parameter

in the Jiles-Atherton model or two distributions of HC fluctuations in ABBM-

type models. The Sakamoto et al. model (4) considers both kinds of sites,

but these were used to model the overall RMS noise rather than the variation

of the BN voltage with H. Kameda and Ranjan (5) considered the effect of

pinning site densities on mean free path, and Moorthy et al. (6) introduced

the idea of distributions of pinning site strengths. These two concepts were

used to develop a new model of the dependence of BN voltage on H in a

steel containing two types of pinning sites.
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5.2 A new model for BN in power plant steels

This model considers statistical distributions of pinning site strengths from

two types of microstructural features, and their combined effect on the num-

ber of BN events and the domain wall mean free path as H varies.

Initially, domain walls are pinned in place by both grain boundaries and

carbides. At a certain value of applied field, those pinned by grain boundaries

are released, but the carbide-pinned domain walls remain in place until the

field has increased sufficiently for them to escape. This model is slightly dif-

ferent from that of Moorthy et al., in which the walls are initially considered

to be pinned only by grain boundaries.

The distance moved by a domain wall after unpinning, and the resulting

change in magnetisation, depend on the spacing of domain wall obstacles.

Pinning sites which act as obstacles at low applied fields may easily be by-

passed at higher fields, so that they would no longer act as effective pinning

sites. This new model therefore considers the domain wall mean free path

as a function of applied field, rather than adopting a constant value as has

been used in most previous interpretations apart from the work of Kameda

and Ranjan (1987a).

5.3 Assumptions

It is assumed that all domain walls are planar and of Type-II character. BN

events are due solely to domain wall motion, and the number of domain walls

remains constant, within the applied field range of interest. The domain wall

surface area also remains the same throughout, and domain walls do not

interact with one another. In essence, it is assumed, as in the ABBM model,

that the ensemble of domain walls behaves in exactly the same way as would

a single wall. The domain walls are assumed always to move in discrete jumps

rather than continuously. Their motion is assumed to be rapid compared to

the rate of change of field with time.

Fluctuations in the coercive field or potential energy originate only from

microstructural features, which are distributed evenly in space. The strength
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of these pinning sites is characterised not by a constant but by a statistical

distribution. It is assumed for the sake of simplicity that there is no energetic

interaction between pinning sites.

Based on previous experimental observations, it is proposed that the num-

ber and type of pinning sites which are actively able to obstruct domain walls

varies with the applied field. The field required to overcome a pinning site

is determined by the local coercive, or pinning, field. If the field experienced

by the domain walls is H, pinning sites with HC < H can be overcome, and

only those with HC ≥ H will resist wall motion.

The actual field experienced by the domain wall differs from the applied

field by an amount depending on the magnetisation and the demagnetising

factor. Many previous models have relied on the assumption that the BN

signal amplitude is proportional to the rate of change of magnetisation dM/dt

or induction dB/dt. If this relationship were to be used here then it would

be possible to estimate the demagnetising field. However, it has been shown

experimentally that this proportionality does not always hold (Kim et al.,

1992) and that the regime of its applicability is complex, depending on the

microstructural condition and the applied field amplitude. It was therefore

decided to avoid using this relationship.

A possible solution to this problem of demagnetising fields would be to

obtain the magnetisation as a function of applied field from the Jiles-Atherton

or Preisach model, as used when fitting ABBM-type models, and use this to

modify the field value for the new model. However, the published data sets

used for the fitting did not include hysteresis measurements.

It was considered that, for the initial development of the model, demag-

netising fields should be assumed not to have a significant effect on the be-

haviour of the domain walls. Since BN measurement geometry is designed to

minimise demagnetising and stray fields, this assumption may be reasonable.

Modifications to include a demagnetising factor could be made if the model

showed promise.
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5.4 Origin of the noise

A domain wall of surface area Aw, moving a distance l
w

and sweeping out a

volume (Aw.δl
w
), causes a change in magnetisation δm:

δm = β(Aw.δl
w
) (5.38)

where β depends on the angle between the magnetisation of adjacent do-

mains and the atomic magnetic moment (Saquet et al., 1999). If it is assumed

that the domain walls always move in a direction parallel to the normal of

the domain wall plane, then the expression (S.δl) reduces to S · δl. The total

change in magnetisation δM{H} at a certain field H is given by the product

of the number of domain wall movement events at field H, N{H} and the

vector sum of all the individual changes δm. Assuming that all the domain

walls involved are Type-II (180◦), β is constant, and Equation 5.38 reduces

to:

δM{H} ∝ N{H} < l > {H} (5.39)

where < l > {H} is the average domain wall displacement (mean free path)

at field H.

The electric field amplitude E0 induced by this change in magnetisation

is given by the rate of change of magnetisation with time. For a discrete

change in magnetisation, this is given by:

E0 =
δM

δt
(5.40)

where δt is the time interval over which the change occurs. As mentioned

above, it is assumed that the domain walls move rapidly enough that the

change in magnetisation δM{H} occurs immediately the field is changed,

and does not depend on the rate of change of field.

The noise voltage V measured by the pickup coil depends on the noise

frequency, with higher-frequency noise experiencing more signal attenuation

(Saquet et al., 1999). However, for low-frequency noise, the measured voltage

can be considered to be proportional to E0. For simplicity, therefore, it is
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assumed that the frequency f is low enough to avoid attenuation and to

allow a simple proportionality between the change of magnetisation and the

measured pulse size:

V ∝ N{H} < l > {H} (5.41)

This is the simple relationship ‘Noise amplitude = number of events ×
mean free path’ which is sometimes used to interpret BN signals in the lit-

erature, but it is only truly valid in a limited range of circumstances.

5.5 Construction of the statistical model

5.5.1 Distribution of pinning sites

Initially, it was assumed that the number of pinning sites per unit volume

with pinning strength S, n{S}, follows a normal distribution with mean value

< S > and standard deviation ∆S. The total number of pinning points per

unit volume was A. Thus:

n{S} =
A

∆S
√

2π
· exp

{

−1

2

(

S− < S >

∆S

)2
}

(5.42)

5.5.2 Impediments to domain wall motion

When the material experiences a magnetic field H, pinning sites with pinning

strength S ≥ H are able to impede domain wall motion. These sites will be

referred to as ‘active sites’.

The number of active sites per unit volume N{H} is given by the integral

of n{S} with respect to S from H to infinity:

N{H} =
∫ ∞

H
n{S}dS (5.43)

Thus:

N{H} =
A

2
erfc

{

H− < S >

∆S
√

2

}

(5.44)
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5.5.3 Mean free path of domain walls

In order to estimate the mean free path, it is necessary to make an assumption

about the arrangement of the active pinning sites. A suitably basic first

approximation is to consider all the pinning sites as points arranged in a

simple cubic lattice, with one site per cube of side l, where l = l{H}:

l{H} =

(

1

N{H}

)
1

3

(5.45)

The mean free path of domain walls travelling through the material can

be approximated to l{H}:

< l > {H} = l{H} (5.46)

The assumptions made to derive this expression are crude, taking no

account of the planar nature of grain boundaries, variations in carbide diam-

eter, or phenomena such as the preferential nucleation of carbides at grain

boundaries, but subsequent refinements could be made if the model showed

promise.

5.5.4 Number of Barkhausen events occurring

Assuming for simplicity that there are no demagnetising fields, the field H

experienced by the material is equal to the applied field. The number of

Barkhausen events occurring due to domain wall unpinning at applied field

H is equal to the number of pinning sites of strength S = H.

This is obtained from Equation 5.42:

n{H} =
A

∆S
√

2π
· exp

{

−1

2

(

H− < S >

∆S

)2
}

(5.47)

5.5.5 Barkhausen amplitude

Adopting the assumption that the RMS voltage V {H} at field H is propor-

tional to the number of Barkhausen events n{H} multiplied by the mean

free path < l > {H}:
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V {H} = C · n{H}· < l > {H} (5.48)

where C is a constant, gives:

V {H} = C · A

∆S
√

2π
· exp

{

−1

2

(

H− < S >

∆S

)2
}

·
[

A

2
erfc

{

H− < S >

∆S
√

2

}]− 1

3

(5.49)

5.5.6 Multiple distributions of pinning points

Different types of pinning site can be modelled by introducing more than one

distribution, with different constant terms for each:

ni{S} = Ai · exp







−
(

S− < S >i

(∆S)i

)2






(5.50)

The overall number of pinning sites with a pinning strength greater than

H is now given by:

N{H} =
m
∑

i=1

∫ ∞

H
ni{S}dS (5.51)

where m is the total number of pinning site distributions.

Thus:

N{H} =
m
∑

i=1

Ai

√
π

2(∆S)i

· erfc
{

H− < S >i

(∆S)i

}

(5.52)

The relation V {H} = C · n{H}· < l > {H} (Equation 5.48) should still

apply as long as there are no preferential orientations of particular types of

sites; hence:

V {H} = C ·
m
∑

i=1

Ai

√
π

2(∆S)i

· erfc
{

H− < S >i

(∆S)i

}

(5.53)

Plots of this function for m = 2 were able to replicate single-peak, shoul-

der and double-peak behaviour when appropriate values of the parameters

Ai, < S >i and ∆Si were selected. An example is shown in Figure 5.1. This
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first attempt at modelling, using two normal distributions, is referred to as

Model 1.
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Figure 5.1: Transition between single- and double-peak behaviour

5.6 Log-normal model

In the real experimental data sets shown in Figure 5.2, the lower-field peak

appears asymmetric. A modified model, in which the pinning site strengths

contributing to this peak follow a log-normal distribution (Mihram, 1972),

was therefore proposed:

n{S} =

{

A
S∆x

√
2π

· exp
{

−1
2
( ln(S−Sb)−<x>

∆x
)2
}

S > 0

0 S ≤ 0
(5.54)

where < x > and ∆x are the mean value and the standard deviation of

ln(S−Sb) respectively, and Sb is the field at which the first unpinning events

due to this distribution occur.

This gives an integrated value from H to infinity of:
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N{H} =

{

A
2
· erfc

{

ln(H−Sb)−<x>

∆x
√

2

}

S > 0

0 S ≤ 0
(5.55)

If, as suggested by Moorthy et al., the pinning strengths contributing to

the first peak are related to grain size, a log-normal distribution would be

a reasonable assumption, since this is the approximate distribution found in

experiment (Okazaki and Conrad, 1972; Rhines and Patterson, 1982; Pande,

1987, reported in Krill and Chen, 2002).

The second peak, as before, is modelled as a normal distribution. The

overall model is constructed in the same way as above, and referred to as

Model 2.

5.7 Summary of model equations

Model 1

n1{S} = A1 · exp
{

−
(

S−<S>1

(∆S)1

)2
}

n2{S} = A2 · exp
{

−
(

S−<S>2

(∆S)2

)2
} (5.56)

Model 2

n1{S} =

{

A1

S∆x
√

2π
· exp

{

−1
2
( ln(S−Sb)−<x>

∆x
)2
}

S > 0

0 S ≤ 0

n2{S} = A2 · exp
{

−
(

S−<S>2

(∆S)2

)2
}

(5.57)

Both models

N{H} =
∫ ∞

H
(n1{S} + n2{S})dS (5.58)

V {H} = C · (n1{H} + n2{H}) ·
(

1

N{H}

)
1

3

(5.59)

5.8 Comparison with experimental data

Models 1 and 2 were tested against experimental data from Moorthy et al.

(1998) on a 0.22 C 0.12 Mn wt. % steel, quenched and tempered at 600◦C
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for a range of times between 0.5 and 100 hours (Figure 5.2). These data

were chosen because, after the earliest stages of tempering, there was only

one type of carbide present: Fe3C. Also, published data on the average grain

and carbide sizes in these steels were available. Data were acquired using the

program ‘DataThief’, which converts images into digital data.
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Figure 5.2: Real BN data from tempered 0.22 C 0.12 Mn wt. % steel. Data
from Moorthy et al., 1998.

Programs were written to fit Models 1 and 2 to the experimental data.

The Fortran 77 code for the Model 2 program, and details of the fitting

methodology, are given in the Appendix.

The fitted BN curves are shown in Figure 5.3–Figure 5.8. The horizontal

scales on these diagrams are in units of magnetising current rather than

applied field, but the field is proportional to the current so the shape of

the curve is not affected by this. It can be seen that single peaks can be

fitted very well using both models (Figure 5.3). Model 2 is better at fitting

shoulder behaviour (Figure 5.4) and two-peak behaviour (Figure 5.8). The

region between the peaks is the most problematic for both models; the real
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V value is higher than the modelled value, causing the fitted peaks to move

closer together than the real peaks. The noise in this central area may be

due to pinning by intragranular dislocations, which have not been considered

in either model.

The ‘error’ figure quoted to quantify the goodness of fit is calculated

using:

E =

[

∑

(Vr{H} − Vp{H})2

∑

(Vr{H})2

]− 1

2

· 100% (5.60)

where Vr{H} is the real value and Vp{H} the predicted value of the RMS

Barkhausen voltage V at field H.

Barkhausen two-peak data may also be analysed by fitting a normal dis-

tribution to each peak. The total amplitude is given by the sum of two ex-

pressions of the form of n1 and n2 in Equation 5.56 (but since Equation 5.58

and Equation 5.59 are not considered, the parameters in the normal distribu-

tion expressions have different meanings from those in Equation 5.56). The

error due to fitting using this method was compared with the errors due to

the two models. The results in Table 5.1 show that, while the peak-fitting

method sometimes produces a fit comparable with that of Model 1, Model 2

performs consistently better, especially at longer tempering times when the

double-peak behaviour is well developed.
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Figure 5.3: Fitting of data for plain-carbon steel tempered for 0.5 h.
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Figure 5.4: Fitting of data for plain-carbon steel tempered for 1 h.
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Figure 5.5: Fitting of data for plain-carbon steel tempered for 5 h.
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Figure 5.6: Fitting of data for plain-carbon steel tempered for 15 h.
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Figure 5.7: Fitting of data for plain-carbon steel tempered for 25 h.
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Figure 5.8: Fitting of data for plain-carbon steel tempered for 100 h.
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Time Error (%)
Peak-fitting Model 1 Model 2

0 3.58 3.60 3.14
0.5 2.98 3.03 2.85
1 13.1 7.18 6.44
5 6.16 6.05 5.20
15 9.01 9.31 6.23
25 13.9 13.5 6.96
100 8.44 8.69 6.53
Mean 8.17 7.34 5.34

Table 5.1: Fitting errors of arbitrary peak-fitting, Model 1 and Model 2.

5.9 Relationship between fitting parameters

and metallographic data

5.9.1 Pinning strength relationships to grain and car-
bide sizes

In order to test whether the model has any physical basis, the fitting pa-

rameters obtained were compared with grain and carbide size data from the

work of Moorthy et al.

In Model 1, the parameters < S >1 and < S >2 represent the average

pinning strengths of the two distributions. Figure 5.9 shows a decrease in

< S >1 with increasing grain size, but an indeterminate relationship between

< S >2 and carbide size.

In Model 2, the average pinning strength of the log-normal distribution

is given by e<x> + Sb (Equation 5.54). Figure 5.10 shows a clear decrease

in e<x> + Sb with increasing grain size, and an increase in < S >2 with

increasing carbide size. These trends correspond well with the expected

pinning strength behaviour of grain boundaries and carbides in tempered

steels. It is therefore likely that Model 2 has a more reliable physical basis

than Model 1. Since the relationships between the modelling parameters

and the microstructural measurements are approximately linear, it should
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Time Grain size / µm Carbide size / µm Fitting error / %
1 3.7 0.13 9.29
5 5.6 0.17 5.63
15 8.9 0.26 8.00
25 10.7 0.34 7.05
100 21.5 0.46 6.82

Table 5.2: Fitting errors for model with values of e<x> + Sb and < S >2

calculated from microstructural data.

be possible to estimate grain and carbide sizes within this range by fitting

the Barkhausen profile using this model.

5.9.2 Fitting of model to microstructural data

Linear regression was applied to obtain the slopes of the straight lines on

Figure 5.10. Using these slopes, values of e<x> + Sb and < S >2 calculated

from the grain and carbide sizes respectively were substituted into the model

and the other parameters fitted as before. Table 5.2 shows the errors gen-

erated by this fitting. They are larger than those for Model 2 in Table 5.1,

but still lower than for peak-fitting, and for Model 1 in all cases but one. As

before, the superiority of Model 2 is more evident at longer tempering times.

5.9.3 Tests of the model on other data sets

Three further data sets were available, from a 0.22 C, 0.02 Mn wt. % steel, a

21
4
Cr1Mo and a 9Cr1Mo steel (Moorthy et al., 1997b, 1998, 2000). Model 2

was fitted to these data sets, and the variation of the fitting parameters with

tempering time was studied.

Carbon-manganese steels

Comparisons between the Model 2 fitting parameters from the two C-Mn steel

data sets are shown in Figure 5.11–Figure 5.14. Fitting of the 5 hour data

set gave a ∆S2 value several orders of magnitude greater than those of the

other data sets. This was clearly an unphysical solution, and an indication
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that the fitting program must be modified to avoid even infrequent failures

of this sort. This point was removed from the plots so that trends in the

other values could be seen. Figure 5.11 shows the variation of e<x> + Sb,

with tempering time. It initially drops very rapidly, then decreases more

slowly at longer times. This corresponds well with the expected changes

in grain boundary pinning strength, with an initial rapid decrease as the

dislocation density reduces, followed by a more gradual change as coarsening

and recrystallisation take place. The peak at 5 hours in the blue curve is

from the same set of parameters as the unrealistic ∆S2 value was found, so

the e<x> + Sb value here may also be unreliable.

< S >2 increases rapidly at short tempering times, then begins to level off

at longer times (Figure 5.12). This may be due to the pinning site strength

increasing as the carbides coarsen, then reaching the critical size for spike

domain formation at longer times.

The relationship betwen ∆x and the tempering time is less clear (Fig-

ure 5.13), but the variation of ∆S2 with tempering time is consistent between

the two steels. However, ∆S2 does not correspond to the widths of the car-

bide size distributions published by Moorthy et al. (1997b), which increase

monotonically with tempering time.

Power plant steels

Figure 5.15 and Figure 5.16 show experimental data from 21
4
Cr1Mo and

9Cr1Mo steels respectively. The variations of e<x> + Sb and < S >2 with

tempering time for these data are plotted in Figure 5.17 (21
4
Cr1Mo) and

Figure 5.18 (9Cr1Mo). In both cases, e<x> +Sb decreases rapidly in the very

early stages of tempering, before increasing slightly at longer times. < S >2

peaks at an intermediate tempering time in the 21
4
Cr1Mo steel, but not in the

9Cr1Mo steel. This may be related to a real phenomenon involving carbide

precipitation sequences, or to errors in fitting. It is difficult to know which

is the case without carbide size data for these steels.
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– 124 –



Chapter 5 Modelling

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

F
it
te

d
 e

<
x
>
 +

 S
b
 v

a
lu

e
 /
 A

Tempering time / hours

0.22C, 0.12Mn wt.%
0.22C, 0.02Mn wt.%

Figure 5.11: Relationship of Model 2 fitting parameters e<x> + Sb with tem-
pering time for two steels of similar composition.
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Figure 5.12: Relationship of Model 2 fitting parameter < S >2 with temper-
ing time for two steels of similar composition.
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Figure 5.13: Relationship of Model 2 fitting parameter ∆x with tempering
time for two steels of similar composition.
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time for two steels of similar composition.
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Figure 5.15: Real BN data from tempered 21
4
Cr1Mo power plant steel. Data

from Moorthy et al., 1998.
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Figure 5.16: Real BN data from tempered 9Cr1Mo power plant steel. Data
from Moorthy et al., 1998.
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Figure 5.18: Model 2 fitting parameters e<x> + Sb and < S >2 versus time
for 9Cr1Mo steel.
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5.10 Discussion

Model 2 fits experimental data well in most cases, and it is therefore likely

that its physical basis is better than that of Model 1. In order to test the

model further and to understand the relationships of its modelling parameters

with microstructural data, it is necessary to obtain BN data sets from a wide

range of samples with well characterised microstructures. The following four

chapters describe the microstructural characterisation, BN experiments and

model-fitting carried out for this purpose.

It appears that, despite extensive testing before use, the fitting program

cannot always be relied upon to produce reliable parameters. It may be useful

to modify the program to limit the range in which the solutions can lie, or to

apply other constraints on the basis of experience. ∆x and ∆S seem to be

the parameters presenting the greatest problems for fitting, possibly because

both A and ∆S affect the peak heights, so that it is difficult to determine

correctly the effect of these two parameters on a peak.

5.11 Conclusion

Two models have been proposed to interpret BN data obtained from tem-

pered steel. A model using a log-normal distribution of pinning site strengths

for the lower-field peak, and a normal distribution for the higher-field peak,

gave good agreement with real data. Clear relationships were found between

the fitting parameters characterising the centres of the distributions, and

measured grain and carbide dimensions. It therefore appears that this model

both supports the interpretation of Moorthy et al. that two-peak BN signals

are due to the separate effects of pinning by grain boundaries and carbides,

and provides a basis for microstructural estimation from Barkhausen data.

However, it will be necessary to test the model against more experimental

data to confirm this relationship, and to improve the fitting method so that

it always produces physically realistic model parameters.
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