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9. Genetic Algorithms

9.1 Introduction

The concept of evolution is prevalent in most biological systems. Generation after

generation, certain characteristics are encouraged if they fit the environment. A

classic example of natural selection is the peppered moth [49]. Both light and dark

moths were present during the industrial era. But the latter became the prominent

variety because of changing environmental conditions. The trees darkened as a result

of the pollution, so the white moths began to alter their pigmentation and evolve with

a peppered exterior. Natural camouflage against predatory birds therefore increased

their chances of survival. This system of natural selection can, in principle, be applied

to computational optimisation methods using “genetic algorithms” [50]. 

9.2 Neural Networks and Genetic Algorithms

As discussed earlier, neural networks can be used to perform complex regression with

a large number of inputs. The resulting non-linear models can capture their

interactions, but we may wish to use the neural network backwards and identify sets

of input variables resulting in a desired output value. However, the large numbers of

variables and the non-linear character of the model render this difficult. 

The problem is that of looking for the input set (xi), which will give a desired output y,

with:

).....,,( 321 nxxxxfy = (9.1)

with the function f  being non-linear. Genetic algorithms (GAs) is one possible

method of solving such a problem. Goldberg described these algorithms as “search

procedures based on the mechanics of natural selection and natural genetics” [50]. 

Once a target output value t is selected, the GA randomly generates sets of inputs

called “chromosomes”, which exist in populations:

[ ]iziiii xxxx ,...,, 321=Χ (9.2)
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Each chromosome Xi is composed of a set of variables {xi1… xiz} called "genes". These

sets are then ranked according to a fitness factor, which describes how well they

perform. In the above example, a fitness factor F could be:
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ii fy
F

−
= (9.3)

where yi is the desired output for an ith set of inputs. Those that are close to the desired

output are allowed to "breed" in order to generate another z sets of inputs, whereas the

others are eliminated. In this way, it should be possible to evolve towards the correct

set of inputs, hence demonstrating that the GA process is based on the concept of

“survival of the fittest”. 

9.2.1 Creating the next generation

Chromosomes with a high fitness have a good chance of being "reproduced" into the

next generation. This therefore increases the number of fit chromosomes in

subsequent generations. 

Crossover is the next operator to follow. This process typically involves a pair of

chromosomes, Xi and Xj, that can be randomly selected from any population of the

new generation [51]:

[ ]izkiikiiii xxxxxx ...,,,, )1(321 +=Χ (9.4a)

[ ]jzkjjkjjjj xxxxxx ...,,,, )1(321 +=Χ (9.4b)

where xi1 is the first gene of chromosome i and z is the number of genes. 
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Both Xi and Xj will crossover and exchange information to create two new

chromosomes Xi' and Xj':

[ ]jzkjikiiii xxxxxx ...,,, )1(32,1 +=′Χ (9.5a)

[ ]izkijkjjjj xxxxxx ...,,, )1(32,1 +=′Χ (9.5b)

The final operator is mutation, where some genes are altered at random. This helps

preserve the diversity of the GA and also to prevent early convergence within local

minima. However, this raises the issue of a satisfactory mutation rate. It is important

that mutations are large enough to escape local minima, but small enough to ensure

that searching does not become stochastic. A possible compromise may be to have a

multitude of populations but this may not be necessary if a large number of genes are

being generated.  The disadvantage then is the speed of convergence, so an

investigation into the appropriate number of populations is necessary.

 

In parallel, there is also an introduction of new genes to populations during the

optimisation process. These are again chosen at random, as with the initialisation of a

new population. The same condition of non-negative values is also applied here, as

well as the crossover and mutation processes.

In summary, each population contains chromosomes that begin with random values.

Those that are fittest are reproduced to the next generation, where they mate and swap

chromosome sections. Mutations also occur occasionally to randomly selected genes

to preserve diversity. 

After each generation, the values are continually fed into the neural network, where

the score is calculated and ranking follows. This cyclical process continues until the

user specifies the number of generations they require or until a desired accuracy, with

respect to the target, is reached. The hope is that the optimal solution is found by the

end of the cycle.
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9.3 Application to Neural Networks

Figure 9.1 outlines the GA process in a flowchart, but the following sections outline

important aspects of optimisation.

9.3.1 Normalised inputs for genes

The initial populations are given random input values for every gene of each

chromosome, chosen by a random number generator. The range of each variable in

the database used for training the neural network was normalised between ±0.5, as

described previously. However, for the purpose of GAs, the values are allowed to

exist beyond this range and search a wider range of input space. The error bars

associated with these predictions may well be large, as seen in table 9.1, but

knowledge of uncertainty is the most critical issue. Indeed, the level of uncertainty

can be used as a constraint in setting the environment.

Population 
Number

Chromosome 
Number

Cr  
/ wt %

 Ni 
/ wt %

 Mn 
/ wt %

 Mo 
/ wt %

 C 
/ wt %

Result 
/ MPa

± Error 
/ MPa

1 1 14.31 7.29 1.31 0.75 0.14 77.95 84.83
1 2 14.31 7.29 1.31 1.62 0.17 78.37 102.17
1 3 14.31 7.29 1.31 1.62 0.17 78.37 102.17
1 4 14.31 15.21 1.31 2.28 0.07 73.20 72.89
2 1 14.53 11.35 0.21 1.86 0.11 75.81 81.03
2 2 19.11 15.21 2.88 1.49 0.015 76.35 74.88
2 3 19.11 15.21 2.88 1.49 0.015 76. 35 74.88
2 4 19.11 15.21 2.88 1.49 0.015 76. 35 74.88

Table 9.1 An example of generated data from the GA of two populations with four
chromosomes, each having five sets of genes, together with predictions and associated

error, which accounts for test error and fitting uncertainty.
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9.3.2 Physically meaningful inputs

As the GA searches the input space, there is a distinct possibility that negative values

are studied for variables, which cannot be less than zero. For these variables, the

search was confined to regions where: 
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9.3.3 Fitness function

The simplest method to rank chromosomes would be test error. However, since neural

networks are being used, it would be especially useful to incorporate fitting

uncertainty into the fitness function. Hence ranking was based upon the model

committee error (as in equation 8.13):

∑∑
−=

−+=
n

i
i

n

i
y yt

nn
FE

i
1

2

1

2 )(11 σ (9.7)

where n is the number of models in the committee that are used to make predictions

on a single set of inputs (which give the lowest test error or highest LPE). The FE can

define the fitness of each chromosome, so that a higher "score" gives a high ranking.

However, the error needs to be inverted to guide the optimisation process correctly:

FE
Score 1

= (9.8)

Genetic algorithms then use this information to speculate on new search points for the

next generation. This is done using the three optimising operators; reproduction,

crossover and mutation. 
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9.4 Test Simulations

A program was developed to use neural networks and GAs in tandem, using the

attributes as described in this chapter. This allowed sets of inputs that lead to the same

or improved strength to be identified.

9.4.1 Just a random search?

It was important to establish whether the optimisation process was more efficient than

a simple random search. The YS model was used with all the variables from table 8.1

to examine this issue. Both simulations were set according to table 9.2 as follows:

Populations 4
Generations 100
Inputs allowed to vary All variables
Boundary of generated random numbers ±1
Chromosomes per population 10
Crossover rate Performed every 10 generations between

all populations
Desired YS 0.4 (normalised); 310 MPa
Accuracy To within 10%
Target score 25
Mutation rate Nominal*

Table 9.2 Reference parameter settings

(* - Exact value is uncertain, but all variations of mutation rate are related to this

nominal value)

The target score, Ts, is defined as:

2)(
1

AT
T

n
s

×
= (9.9)

where Tn is the normalised target and A is the accuracy. The target score was set to 25

in this simulation, but the GA continued even if this was satisfied. This was because

convergence would come at different times for each simulation. The aim was not to

find the point of convergence, but rather the performance after a given number of

generations.
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For the random search, the best score was retained after each generation. However the

GA search had its chromosomes ranked in the following way:

Chromosome number(s) Action
0-3 Reproduced and kept at the top of the list
4-5 Swaps genes of chromosomes with others

within a population
6-7 New individuals are created 
8 Chromosome is mutated
9 Chromosome is used in crossover of

genes across all populations

Table 9.3 Operations upon 10 chromosomes after ranking each generation

Note that the first chromosome is “0”, and the tenth is “9”.
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Figure 9.2 – Comparing a random search with the GA process, where each population
is ranked in score order. Point "A" represents a chromosome with a unique high score

in relation to the others. 

The results in figure 9.2 show that the genetic algorithm is reaching higher fitness

values than a random search. Note that four populations have been studied, the range

over which the variables can vary is identical (table 9.2) for each population. Since all

initial chromosomes are generated at random, the results in each population should

not differ much, with the exception of point A (fig. 9.2), considering that each
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population has only ten chromosomes. However the target score was 25 which means

that the desired accuracy has not been achieved with either process.

In an attempt to increase the likelihood of reaching the target, the number of variables

was reduced to only 2; chromium and nickel. The others were fixed to 0.47Mo-

1.56Mn-0.62Si-0.01Nb-0.04Ti-0.17Cu-0.031N-0.062C-0.0007B-0.025P-0.013S-

0.047Al wt%, whilst the ratio was calculated as 0.121. The heat treatment and test

temperatures were 1400 K and 298 K respectively. The aim was to discover whether

the number of variables was limiting the ability of the GA to converge.

Figure 9.3 – Same as figure 9.2, but with an extra plot showing the effect of reducing
the number of inputs that can vary to two.

 

From figure 9.3, it is clear that the number of variables does limit the speed of the

process. However, it is first necessary to conduct test simulations to discover the

effects of the different settings upon the performance of the GA.
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The settings for the following tests are the same as in table 9.2. However, only

chromium and nickel were allowed to vary, and the remaining compositions were set

as mentioned above. 

9.4.2 Generations

It is thought that as the search algorithm continues over time, the scores should tend to

achieve, or exceed, the target. To investigate this, 50, 100 and 500 generations were

tested, as shown in figure 9.4.

Figure 9.4 – Results of test simulation with 50, 100 and 500 generations. However,
the benefits of running for 500 generations are exaggerated by the highly scored

chromosome in population 1, thought to be a random case.

The premise that more generations equate to a higher score was confirmed, as the

probability of covering the input space increases, at least until the highest possible

score is achieved. This result reinforces the integrity of the GA process. However, it

would be desirable to increase the speed of convergence on the target. 
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9.4.3 Populations

A multitude of populations, or a larger number of chromosomes in each population, is

needed to survey the range of input space available. However, it cannot be so large

that convergence is slow, so 2, 4, 8 and 20 populations were tested. 

Figure 9.5 - Results of test simulation with 2, 4 and 8 populations

From figure 9.5, 8 populations performed the best in terms of producing relatively

high scores in relation to the target score. The 20 population simulation did appear to

achieve some high scores (not shown), but the majority of scores were relatively low.

There is also a convergence speed problem, as the time to complete a generation also

increases. From this, it was thought that enlarging the chromosome population might

prove more fruitful.

Before this simulation was done, the settings in table 9.3 were also adjusted to cater

for more chromosomes, table 9.4. If ignored, the final 10 chromosomes would be

neglected of all but the crossover operator after each generation.
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Chromosome number(s) Action
0-7 Reproduced and kept at the top of the list
8-11 Swaps genes of chromosomes with others

within a population
12-15 New individuals are created 
16-17 Chromosome is mutated
18-19 Chromosome is used in crossover

Table 9.4 Revised operations upon 20 chromosomes after ranking each generation

Figure 9.6 - Results of test simulation with 10 and 20 chromosomes. Note that the 10
chromosome population plot is not continuous, so that both models can fit on the

same axis.

There was not much difference between the best performing chromosomes of each

simulation, figure 9.6. However, increasing the number of chromosomes also

increases the number of search points within input space, hence 20 chromosomes are

seen to be more useful.
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9.4.4 Crossover rate

From table 9.2, it is seen that crossovers occur after every 10 generations. This was

adjusted to different settings to see the effect on the target score; 1, 5 and 20 were

chosen to investigate.

Figure 9.7 - Results of test simulation with 1, 5, 10 and 20 crossovers per generation

In general, crossovers after each generation gave the best performance. It was

consistently amongst the highest scores in figure 9.7, compared to other simulations.

The 20 generation model was also quite good. However, it was thought that the

simulation that maximises the sharing of information between the population should

be encouraged. 
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9.4.5 Mutations

This parameter was required to ensure that crucial information was not lost whilst

advancing through the generations. Moreover, it is a safeguard against remaining

within secondary minima. Nevertheless, it should not be too large so as to invoke a

random search. 

Figure 9.8 - Results of test simulation with 0.5x, 1.0x, 5.0x and 10.0x mutation rates

As seen in figure 9.8, the nominal value from the parameter settings (table 9.2)

actually performed quite poorly, hindering the optimisation process. In fact, a

mutation rate set to half of the nominal appeared to be the best performer. 
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9.4.6 Random number boundaries

Random values are used to supply gene values for every chromosome to initialise the

GA process. This is also used to generate new chromosomes during optimisation. As

shown in table 9.2, there is a boundary as to where these values can come from, hence

±0.7, ±3 and ±5 were examined.

Figure 9.9 – Results of test simulation with ±0.7, ±1.0, ±3 and ±5 boundaries for
random number generation

From figure 9.9, ±0.7 performed the best. However, this was probably because the

error bars would get larger as the range increases beyond the neural network database.

However, a wider domain is desired to search for a variety of solutions, hence ±5 may

be desirable. Again, the convergence speed must be accounted for before selection, so

a boundary of ±3 was taken as a compromise. Nevertheless, in the event that gene

values became erroneous in future simulations, the boundary would be narrowed

further to counter this effect.
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9.4.7 Updated Settings

A final test simulation was conducted to compare the reference settings and the newly

suggested settings, shown in table 9.5.

Populations 8

Generations 100

Inputs allowed to vary Cr, Ni only

Boundary of generated random numbers ±3

Chromosomes per population 20

Crossover rate Performed after every generation between

all populations

Desired YS 0.4 (normalised); 310 MPa

Accuracy To within 10%

Target score 25

Mutation rate 50% of nominal reference setting

Table 9.5 Revised parameter settings

Figure 9.10 shows that the new settings did not perform as well as the original after

100 generations. However, a larger range of input space is being searched from the

initial random number generation. If this is taken into account, it is understood that

convergence will be slower but for a purpose.
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Figure 9.10 – Comparison of the original and new settings

9.4.8 Analysis summary

This analysis was useful as a guide for the best settings for optimisation. However, it

is still difficult to ascertain whether convergence will be faster. For example, a high

score below the target score after 100 generations may be performing well, but there

is no guarantee that it will advance faster than a gene with an inferior score at that

moment in time. Nevertheless, the examination highlighted that adjustments to

parameter settings can have a marked difference on performance.  
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9.5 Predictions

Based on the settings suggested in section 9.4.7, predictions were made for a target

outside the neural network database for temperatures 298 and 773 K, as shown in

table 9.6. The only major differences with the previous section were increases in the

number of input variables allowed to vary and the number of generations. The heat

treatment temperature was fixed at 1400 K. 

Populations 8

Generations 1000

Inputs allowed to vary Cr, Ni, Mo, Mn, Si, B, C , N, ratio

Boundary of generated random numbers ±3

Chromosomes per population 20

Crossover rate Performed after every generation between

all populations

Desired YS 1.0 (normalised);  495 MPa

Accuracy To within 10%

Target score 10

Mutation rate 50% of nominal reference setting

Table 9.6 Parameter settings for predictions

9.5.1 Reproduced chromosomes

A total of 5 simulations were run for both test temperatures, and an average score was

taken. As previously stated, the highly scored chromosomes are reproduced and

ranked at the top of the next generation. This ensures that the score does not degrade

at any time during optimisation. In this case, 8 chromosomes are reproduced, but as

seen in figure 9.11a, they all have the same score. This was a concern, as vital

information is not seen to be well-distributed. To investigate this, identical

simulations were run, but only 2 chromosomes were allowed to reproduce per

generation. Hence the remainder were left to exchange information. 
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In figures 9.11a and 9.11b, it is clear that there is not much difference in top scoring

chromosomes in either case. However with only 2 chromosomes reproduced, the

majority are involved in sharing genes, hence increasing the likelihood of reaching the

target score specified. 

Figure 9.11a - Comparison of scores for varying chromosome reproduction at 298 K

Figure 9.11b - Comparison of scores for varying chromosome reproduction at 773 K
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9.5.2 Revised settings

The parameter settings are as defined in table 9.6, except for the random number

boundary, which was limited to ±1 to speed up convergence. The number of

generations was also increased to 2000 to allow the GA more time to find solutions.

Note that optimal searches were only conducted for yield strength. This was because

the UTS neural network model committee was quite complex; hence the GA search

would be very slow. 

A total of three simulations were run for test temperatures 298 K and 773 K. This was

done to achieve a range of compositions, which should begin from different areas of

input space.

Figure 9.12a - Scores for simulation 1, 2 and 3 at 298 K
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Figure 9.12b - Scores for simulation 1, 2 and 3 at 773 K

The target score was set to 10, but the maximum value achieved after the GA process

was around 1.5 for both temperatures (figs. 9.12a and 9.12b). Nevertheless, analysis

of the fittest chromosomes (top 2 of each population) revealed some interesting

results, as shown in table 9.7.

In the 298 K simulation, the best chromosomes reached approximately 400 MPa, but

the associated errors were quite high. However this was expected, as they had output

values greater than the maximum YS reported in the neural network database.

Moreover, the error bars are not so large as to be considered unrealistic and all the

listed chromosomes listed appear to have sensible gene values.
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Cr /
wt%

Ni /
wt%

Mo /
wt%

Mn /
wt%

Si /
wt%

N /
wt%

C /
wt%

B /
wt%

Ratio Result /
MPa

Error /
MPa

18.689 9.799 1.737 2.425 0.575 0.0405 0.103 0.005 0.238 396.440 171.352
18.480 12.142 4.365 2.425 0.575 0.0405 0.091 0.004 1.054 422.055 178.843
17.434 12.378 4.365 2.425 0.575 0.0405 0.068 0.006 0.703 394.063 168.524

Table 9.7 - Best compositions from GA after 2000 generations for 298 K for Fe-
0.01Nb-0.04Ti-0.17Cu-0.025P-0.013S steel

Cr /
wt%

Ni /
wt%

Mo /
wt%

Mn /
wt%

Si /
wt%

N /
wt%

C /
wt%

B /
wt%

Ratio Result /
MPa

Error /
MPa

18.673 11.446 1.761 2.425 0.575 0.064 0.107 0.002 1.531 399.559 302.067
20.488 18.286 4.365 2.069 0.245 0.014 0.124 0.010 0.425 363.839 216.094
18.673 11.446 1.761 2.425 0.575 0.064 0.107 0.002 1.319 387.744 288.738
18.673 11.446 1.455 2.425 0.575 0.064 0.107 0.002 1.319 385.426 293.789
20.488 18.286 4.365 2.425 0.245 0.014 0.124 0.010 0.425 364.222 219.021
18.102 10.123 4.365 2.425 0.575 0.064 0.128 0.005 0.261 381.350 218.256

Table 9.8 - Best compositions from GA after 2000 generations for 773 K for
Fe-0.01Nb-0.04Ti-0.17Cu-0.025P-0.013S steel

(error in tables 9.7 and 9.8 includes ±1σ and fitting uncertainty)

The search conditions were quite different for 773 K. The maximum YS reported in

the database for steel at 773 K was 265 MPa, hence requesting 495 MPa would be

quite a challenge. Nevertheless, the GA process still predicted quite well, as with 298

K, managing to predict around 400 MPa (table 9.8). However, the associated errors

were larger in this case.

The predictions made here do require further investigation. Batch production in lab

conditions may be a possibility to see how well the GA has predicted. However, this

is beyond the scope of this project. 

To improve upon these findings, an increased number of populations, chromosomes

and generations could be used to help the GA achieve its objective. The convergence

speed may be slower, but time is relative in any situation.

 



88

9.6 Summary

A program incorporating the theory of GAs and neural networks was developed and a

new fitness function was devised for optimisation. The aim was to search for sets of

inputs that led to the same or improved strength. The software for optimising tensile

properties can be obtained from the web:

http://www.msm.cam.ac.uk/map/map.html

Initially, analysis showed that the GA process was superior to a random search.

Different parameter settings were explored to aid optimisation and help speed up

convergence. For example, increasing the number of chromosomes and populations

helped the GA by occupying more of the input space. Allowing the crossover of

information between populations after each generation also allowed more data to be

available to the system.  

Predictions were made using these optimal parameters to find a target YS at different

temperatures. However, the desired target was deliberately set outside the original

neural network database, to see how the GA would cope with such uncertainty.

Results showed that reasonable compositions were suggested, even though the target

YS was not met. Error bars associated with predictions were understandably large, but

not excessive.

The next step would be to conduct a number of repeats to obtain a range of

compositions, and for longer periods, to see whether set targets could be met. 

In general, GAs are not intended to directly translate theoretical compositions of a

given strength into reality. However, the aim of this method is to narrow the focus of

research into new and existing areas which have not been previously explored.

http://www.msm.cam.ac.uk/map/map.html
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