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The choices we make, not the chances we take, determine our destiny.
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Abstract

The short-term mechanical properties of austenitic stainless steels can be affected by a

myriad of factors. Materials scientists conduct countless trials to find new steel

compositions, in an attempt to optimise the properties. The data are generally

analysed using linear regression models [1,2] to reveal more promising compositions.

However, they do not envelop the full complexity of the tensile behaviour of steels.

This thesis begins by reviewing the essential factors and hardening mechanisms that

affect the mechanical properties of steels. The validity of linear regression analyses is

then reviewed and given a critical assessment. As conventional regression methods

are not capable of accurately characterising the non-linear trends of steel strength,

attention was diverted to neural networks, which can allow for such variations within

the data. Neural network models were therefore developed using databases containing

composition and other inputs meaningful to steel strength. The ability to calculate

error bars, dependent on the location of a prediction within the input space and any

perceived noise in the data, is another advantage with this method. Six compositions

were chosen to investigate these models. The predicted trends were shown to be in

good agreement with the literature and the use of contour plots demonstrated the

ability to capture non-linear relationships.

However, it may be desired to reverse the neural network and search for a set of input

variables, which result in a desired target output value. This can in principle be done

by combining the network with a genetic algorithm. This is a search technique based

on the idea of natural selection. Search parameters, such as mutation and crossover,

were first investigated to see how convergence to specified target output values could

be improved. It was found, as expected, that high numbers of populations,

chromosomes and crossovers improved performance. Using these optimal settings,

various simulations were conducted, in an attempt to find compositions of a similar

tensile strength for austenitic stainless steel. The search process was directed towards

a specific output value, but the results showed that the target was not met.

Nevertheless, yield strengths of approximately 400 MPa were still predicted. These

values were reinforced by the presence of moderate error bars and sensible stainless

steel chemical compositions. 



Nomenclature

a Lattice parameter
b Burgers vector
A Area
F Force
T Temperature
σ True stress 
ε True strain
K Strength co-efficient
n Strain rate sensitivity
τ Shear stress
Lo Original length
L Instantaneous length
ln Natural logarithm
G Shear modulus
do Equilibrium stacking fault energy
γ, SFE Stacking fault energy
ν Poisson’s ratio
f Equilibrium particle spacing
σy, YS Yield strength or 0.2% proof stress
UTS Ultimate tensile strength
σo Friction stress
ky Grain boundary hardening constant
Gs Grain size number
fcc Face centred cubic
t Annealing twin spacing

σw Model perceived significance
α, β Hyperparameters in neural networks
Mw Objective function of neural networks
ED Error function in neural networks
Ew Regularisation term in neural networks
σν Gaussian noise in neural networks



Contents

Preface
Acknowledgements
Abstract
Nomenclature

1 Introduction                                                                              1

1.1 Austenitic stainless steel
1.2 Martensite formation

2 Tensile Tests                                                                            6

3 Plastic Deformation and Crystal Imperfections                   9

3.1 Dislocations
3.1.1 Edge dislocations
3.1.2 Screw dislocations

3.2 Stacking faults
3.3 Jogs
3.4 Grain size

4 Hardening Mechanisms                                                           18

4.1 Strain hardening
4.2 Solid solution hardening

5 Precipitation                                                                             21

5.1 Chromium carbide formation
5.2 Stabilisation
5.3 Precipitation Hardening Mechanism

5.3.1 Other elements in precipitation hardening

6 Intermetallic phases                                                                 26

6.1 Sigma phase
6.2 Laves phase
6.3 Chi, G and Z phases

7 Modelling of Tensile Properties                                             29



8 Neural Networks                                                                      30

8.1 Database
8.2 Randomising the dataset
8.3 Yield Strength Model
8.4 Ultimate Tensile Strength Model
8.5 Applications

8.5.1 Chromium
8.5.2 Silicon
8.5.3 Test temperature
8.5.4 Heat treatment temperature
8.5.5 Boron
8.5.6 Non-linear effects
8.5.7 Software

8.6 Summary

9 Genetic Algorithms                                                                 66

9.1 Introduction
9.2 Neural Networks and Genetic Algorithms

9.2.1 Creating the next generation
9.3 Application to Neural Networks

9.3.1 Normalised inputs for genes
9.3.2 Physically meaningful inputs
9.3.3 Fitness function

9.4 Test Simulations
9.4.1 Just a random search?
9.4.2 Generations
9.4.3 Populations
9.4.4 Crossover rate
9.4.5 Mutations
9.4.6 Random number boundaries
9.4.7 Updated settings
9.4.8 Analysis summary

9.5 Predictions
9.5.1 Reproduced chromosomes
9.5.2 Revised settings 

9.6 Summary

10 Conclusions and Future Work                                                89

Bibliography 


	August 2002
	Nomenclature
	
	UTSUltimate tensile strength


	Introduction1
	Conclusions and Future Work89
	
	
	Bibliography




