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Abstract

There have been considerable advances in recent years in the understanding of solid—state
phase transformations. This has involved the creation and application of new knowledge over a
large range of length scales, leading to descriptions which have predictive power and sufficient
complexity to deal with industrial practice. The subject is commonly known as “modelling”.
The application of modelling to steels of the kind used in industry has also highlighted the
shortcomings of kinetic theory. The purpose of the work presented in this thesis was to tackle

some of the difficulties by developing new theory and concepts.

The thesis begins with an introduction to previous work and to the importance of precip-
itation in commercial steels. The theory associated with precipitation reactions is described in
Chapter 2, especially for the growth of particles which are spherical, needle—shaped or plate—
shaped. It is claimed that the published work does not deal adequately with the growth of

such particles in multicomponent systems from the point of view of capillarity and diffusion.

Spherical particles have the unique property that the size, and the radius of the front at
which growth occurs, are described by a single parameter. There has never, therefore, been
a mathematical solution for the growth of a sphere with capillarity taken into account. This
theory is developed in Chapter 3, albeit with a critical approximation, whose effect is explored
by numerical simulation. The solution is also extended for multicomponent alloys in both the

dilute and concentrated forms (Chapters 5, 6).

For needles and plates, where the tip radii and lengths are separate parameters, exact
solutions are possible (even for multicomponent systems), as described in subsequent chapters.
There are exciting conclusions, such as in some cases it is not possible to apply a maximum

growth criterion to select a tip radius.

The final chapter deals with the application of theory to both precipitation and coarsen-
ing phenomena and the thesis concludes with a description of future work and a systematic

presentation of the computer software associated with the work.
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solute concentration of « in equilibrium with 6
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1 component average concentration of solute in the far field

matrix concentration in node n at 7 time interval
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7 component alloy concentration

0 g

initial supersaturation ¢ — C?
capillarity corrected concentration of « in equilibrium with 3
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arbitrary constant in the Hillert growth model

diffusion coefficient
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needle thickness

adimensional half needle thickness for dissolution
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average particle distance

diffusivity

diffusivity of C and Mo

exponential integral function
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needle length
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CHAPTER ONE

Introduction

1.1 Models for precipitation kinetics

The improvement of commercial alloy properties relies on an accurate prediction of the
microstructure. A popular method for alloy strengthening is precipitation hardening. Long
tempering heat treatments frequently lead to coarsening, which usually causes a lowering of the
alloy yield strength and possibly its embrittlement. Therefore, it is useful to develop models
to predict the kinetics of precipitation in order to control and optimise those properties.

In the case of steels, which are the most commonly available structural materials, complex
sequences of precipitates may form. An example of such a case is shown in Fig. 1.1 for
2.25Cr1Mo [Baker and Nutting, 1959], where M stands for a metallic component. The variety
of precipitates that are present at different stages of tempering can affect the properties of that

steel.

700

600

500

TEMPERATURE /°C

400 |-

] | | |
1 10 100 1000

TEMPERING TIME / hrs
Fig. 1.1: Kinetics of precipitation in 2.25Cr1Mo [Baker and Nutting, 1959].

A number of attempts to predict kinetics of precipitation reactions in steels have been
published. Table 1.1 shows a selected review of the modelling done for alloys where a single
precipitate was taken into account [Hall et al., 1972; Saito et al., 1988; Akamatsu et al.,
1992; Liu and Jonas, 1988; Miyahara et al., 1995; Okamoto and Suehiro, 1998; Gustafson et
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al., 1998; Lee et al., 1991a,b,c]; it reveals that most works deal with the precipitate as an
equilibrium phase and some of them use overall transformation theory based on the extended
volume concept [Kolmogorov, 1937; Johnson and Mehl, 1939; Avrami, 1939, 1940, 1941].
In general, the application of these models relies on a number of semi—empirical parameters
which do not always have a clear meaning, and thus their validity is restricted to the alloys
to which they were applied. Furthermore, all of them can cope with only one precipitation
reaction occurring at any instance, as an equilibrium phase. In practice, many reactions may
occur simultaneously and non—equilibrium phases are often important (Fig. 1.1). For example,
in heat-resistant steels the precipitation and dissolution processes continues during service at
elevated temperature as equilibrium is approached. The conventional models listed in Table 1.1
cannot be applied directly to such simultaneous reactions in practical steels.

Olson [1997] has proposed an integral approach for alloy design, which includes simultane-
ous precipitation and overall microstructure prediction in steels. His method is aimed to design
alloys considering a hierarchical analysis ranging from the atomic to the microstructural level;
the goal is to predict a number of parameters ranging from interfacial energies to precipitation
rate constants, but it requires extensive experimental validation prior to utilisation.

Simultaneous precipitation has recently been modelled by Robson and Bhadeshia [1997b]
and Fujita and Bhadeshia [1999, 2001] in power plant and secondary hardening steels, respec-
tively, by the calculation of nucleation and growth kinetics, together with a scheme for overall
kinetics. However, their models are not generally capable of predicting particle size and size—
distribution for non—spherical precipitates, on which strengthening methods rely. Furthermore,

they contain a number of approximations which limit their application.

1.2 Areas of improvement of the theory and aims of this work

The current state of the theory is shown schematically in Fig. 1.2 §, it is seen that im-
portant advances in the treatment of overall transformation kinetics have been achieved, and
success in treating the multicomponent growth of spherical particles has been obtained. Mod-
elling of needle-shaped particles has been developed, but the theory is unable to predict their
aspect ratio, and therefore its shape. Ostwald ripening theory has been applied but assumes no
change in precipitate composition. The way these problems have been tackled in the present

thesis is listed next.

i The existing model is defined as the fundamental concepts that have been applied com-

monly in industry. These are presented in Chapter 2.
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Reference System Conditions Comments
Hall Mo, C in Isothermal Particle lengthening rate was calculated
et al., Fe-0.11C-1.95Mo | heat treatment using Zener—Hillert equation and by
1972 adjusting the diffusion coefficient
Saito NbC in HSLA Deformation at | Volume fraction of NbC was calculated
et al., high by classical nucleation and growth using
1988 temperatures KJMA theory
Akamatsu NbC in HSLA Deformation at | Volume fraction and size of NbC were
et al., high calculated by classical nucleation and
1992 temperatures diffusion controlled growth
Liu and TiC in HSLA Deformation at Precipitation starting time was
Jonas, 1988 high determined experimentally using
temperatures a relaxation test
Miyahara | Laves in Fe-10Cr Tempering Volume fraction of Laves phase was
et al., calculated using the KJMA theory
1995
Okamoto | Nb(C,N) in HSLA | Isothermal heat Volume fraction and size of NbC
and treatment calculated by classical nucleation
Suheiro, diffusion—controlled growth
1998 and capillarity
Gustafson (V,Nb)N in Isothermal heat Size of (V,Nb)N in ripening was
et al., 1988 Fe-10Cr treatment calculated by multicomponent diffusion
Lee et al., Mo, C in several Tempering Size of Mo, C in ripening calculated
1991 secondary harde— using LSW theory

ning steels

Table 1.1: List of of models where the kinetics of one precipitate are taken
into account. HSLA stands for High Strength Low Alloy Steel, KJMA stands
for Kolmogorov—Johnson-Mehl-Avrami theory and LSW stands for Lifshitz—

Slyozov—Wagner ripening theory.

Growth of spheres

The theory for precipitate growth is now capable of predicting the thickening of spher-
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Existing model

- To deal with one phase
as equilibrium phase

- Based on Avrami theory

Robson and Bhadeshia model

- Simultaneous kinetics with
modified Avrami theory

- Deals with diffusion of
only one solute at a time

For practical steels

Fujita and Bhadeshia model

- Simultaneous kinetics with
modified Avrami theory

- Deals with diffusion of two
solutes of very different
diffusivity (C and a metal)

- Predicts sphere size when
capillarity is neglected, and
needle length assuming a
constant aspect ratio

Simultaneous precipitation of
several metastable phases

Determine size of spheres

Deal with two or more solutes

Account for capillarity in
Henrian solutions

The present work

- Simultaneous Kinetics with
rigorous account of Gibbs
energy as precipitation
progresses

- Deals with diffusion of any
number of solutes

Account for capillarity in real
alloys

Determine length and thick-
ness of needle precipitates

Determine length and thick-
ness of plate precipitates

- Predicts sphere size and
accounts for capillarity

- Predicts needle and plate
shape (length and thickness)
- The theory can be applied
to Henrian and real solutions

Fig. 1.2: Schematic illustration of activities for modelling precipitation

reactions.

ical precipitates with one [Zener, 1949] or several solutes [Coates, 1972, 1973a,b] in Henrian
solutions. However it is necessary to account for capillarity during growth. In this work an
approximate analytical and a numerical solution are provided to obtain the kinetics of precipi-
tation reactions accounting for multicomponent diffusion and capillarity effects in Henrian and

concentrated solutions.

Growth of needle and plate—shaped particles

A number of treatments for needle and plate—shaped precipitate growth are available, the
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most comprehensive theory is from Trivedi [1970a,b], who assumes the needles approximate a
paraboloid of revolution, and plates a parabolic cylinder. This theory is, however, restricted to
the diffusion of one solute in Henrian solutions. In this work it is extended for multicomponent

capillarity and interface kinetics effects in Henrian and real solutions.

Ostwald ripening

The Ostwald ripening theory developed by Lifshitz and Slyozov [1961] and Wagner [1961]
has been derived under the assumption that no change in composition of the precipitate phase
occurs during the coarsening process, this assumption is removed and new relationships are

derived.

Model

A new model has been developed to implement some of the new concepts outlined above;
this has been applied to the needle-shaped Mo,C nucleation, growth and coarsening in the
secondary hardening steel Fe—0.11C-1.95Mo wt.%. The results obtained include precipitate
length, thickness and the number of particles at each stage of growth; each particle is assumed

to be in equilibrium with the matrix at any stage of growth.

1.3 Summary

Although a great deal of experimental work has been performed to characterise the precip-
itation process and although semi-empirical models have been applied successfully, the current
stage of the theory demands a great deal of improvement. This developments are essential for

a deeper understanding of the precipitation kinetics, especially in commercial alloys.



CHAPTER TWO

Theory for precipitation reactions

2.1 Introduction

Accurate prediction of precipitation kinetics requires the use of thermodynamics, transport
theory and statistical methods to determine particle dispersions. These fundamental concepts

are presented in this chapter with emphasis on areas where improvement is required.

2.2 Preliminary concepts

An example of a precipitation reaction is when a new phase 3 is formed from a supersat-
urated solution «, obtained by rapid cooling of an alloy of composition ¢, from a temperature

T, (Fig. 2.1) into the two-phase field.

Temperature

c Composition
Fig. 2.1: Precipitation of phase 3 from solid solution « [Cottrell, 1995].

Since o and 3 have different equilibrium compositions, precipitation causes concentration
gradients at the §/a boundaries. The resulting concentration profiles are described in terms
of three different concentrations: ¢®®, which is the solute concentration in the precipitate in
equilibrium with a; ¢®?, which is the solute concentration in the matrix in equilibrium with £;
and ¢, which is the average concentration of solute in the matrix in the “far field” (Fig. 2.2).
The abscissa in Fig. 2.2 represents the distance perpendicular to the precipitate boundary.

The presence of the new phase # will modify the mechanical properties of the alloy. When
dealing with steels of the type Fe-C-X (where X is a substitutional solute), quenching from

6



Concentration

Distance

Fig. 2.2: Concentration distribution around precipitate boundary.

the austenite phase field gives supersaturated martensite, which in steels tends to be brittle.
Therefore, the alloy is tempered at temperatures around 400°C which leads to the precipitation
of iron carbides and an improvement in toughness together with a reduction in strength. To
precipitate more stable alloy carbides requires heat treatment at a higher temperature (e.g.
600°C). Such carbides appear in power plant steels which can be in service for more than 30
years at temperatures around 600°C. It is thus required to have expressions for precipitate

equilibrium; these come from thermodynamics theory.

2.3 Theory of nucleation

2.3.1 The classical theory

Nucleation is the process through which the smallest stable particle of a new phase is
formed. The embryo develops by statistical fluctuations involving individual atom additions,
and evolves from a monomer (i.e. atom) to a critical size configuration known as critical radius
whose growth leads to a reduction in free energy [Aaronson and Lee, 1978].

Assuming that the precipitate nucleates as a spherical particle of radius r, a fluctuation

of structure and composition leads to a change in the free energy by an amount AG given by
4
AG = gﬂrSAGU +4nrio (2.1)

where AG  is the chemical free energy change per unit volume and o is the surface free energy
per unit area of the precipitate-matrix interface. The maximum value of AG with r gives the

activation free energy G* to form a nucleus of critical radius r*:

1670° 2
_ 16rmo . 20 (2.2)

=35 AG

v
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If V.., R, and T are defined as the precipitate molar volume, universal gas constant and
temperature, respectively, the activation free energy G* can be expressed in terms of the
precipitate and matrix concentrations as AG, = (1/V,,) R, T In{¢/c®P} [Christian, 1975], from

which a relationship between r* and the concentrations can be obtained:

r*R T 1
L = 2.
20V, In{¢/c>P} (23)
and the rate of nucleation is
kT G* 4+ Q*

where ()™ is the activation energy required to transfer atoms across the precipitate interface,
Ng is the number density of nucleation sites for the precipitate, & and & are the Planck and
Boltzmann constants, respectively.

Equations [2.2-2.4] describe the kinetics of the nucleation process and have been widely
used. However, one of the difficulties associated with their application is the choice of interfacial
energy o. A typical critical nucleus size may be in the range 2-50 nm and it could be argued
that o should depend on the particle size itself [Christian, 1975]. In the solid-state o may
reasonably be expected to depend also on the orientation of the interface plane. Detailed
information of this kind is simply not available and it is usual therefore to assume a constant
value of o to describe the entire nucleation process. This drastic assumption adds enormous
uncertainty to any calculation of nucleation rates, and certainly does not inspire confidence.

However, recent exciting work by Miyazaki and co-workers [1996, 1999] has demonstrated
that the approximation may in fact be justified. Miyazaki et al. measured by direct observa-
tion the nucleus sizes in concentration gradients (i.e., as a function of the driving force) and
demonstrated that a single interfacial energy could describe all data irrespective of the particle
size by following equation [2.3]. The results were obtained by measuring the critical radii of
nucleated particles as a function of supersaturation, and are illustrated in Fig. 2.3, where the
solid line represents the normalised radius r*R,T/(206V,,), and the data corresponds to the
systems Cu-Ti, Ni-Al, Cu-Co and Ni-Si [Miyazaki, 1999]. The results match equation [2.3]

when the proper value of o is selected.

2.3.2 Surface energy considerations

When atoms are transferred from « to the § phase, there is an additional energy term
due to the increase in surface area of the g particles. If dn atoms are transferred from « to

(3, and the corresponding change in interfacial area is dO, the additional energy term is odO,
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Fig. 2.3: The critical particle sizes scaled with supersaturation of solute

atom for four alloy systems on the basis of equation [2.3], after Miyazaki [1999]

where o is the surface energy per unit area of the a/3 interface, and O is the area of the
interface. If g2 is the Gibbs energy per atom that corresponds to the 3 phase with an infinite
radius of curvature at the interface, and ¢® the Gibbs energy per atom that corresponds to the
matrix, there will be an increase in g2 due to the surface energy term; i.e. g2 will transform
to g = g2 + o(dO/dn), where gP stands for the energy of 3 phase with a curved interface.
The new equilibrium compositions are given by the points of contact of the tangent common

to the curves of g® and g° against the concentration of solute c.

Gibbs energy per atom

composition, ¢

Fig. 2.4: Increase of the Gibbs energy due to the surface energy of the
particle [Christian, 1975]



As shown in Fig. 2.4, there will be a change in the equilibrium composition of the matrix
as an effect of the curvature. For an infinite radius of curvature, the original composition of
the matrix would be ¢®P but interface curvature increases it to ¢2?. Thus, the change in

composition is Ac?? = ¢2f — ¢*# which can be expressed using Henry’s law [Christian, 1975]:

dO 1— P
AceP = T (Z2) (5 2.
Cr ¢ kT(dn)(cﬁa—caﬁ) (25)

To evaluate the term (%), it is noted that for spherical particles dO = (2v°/r)dn, where
dn
v? is the atomic volume of the § phase, and r is the radius of the spherical particle. Thus:

dO _ 20P°

dn ~ v

(2.6)

This is an important relation which will be used in subsequent growth theories. A more general

case is given by Christian [1975]:

dO

=00 ) (2.7)

where r; and r, are the principal radii of curvature.

The capillarity constant is defined as:

r— ov® 1— P I+ dln s® (2.8)
O\ kT cPa — cab dlnc '

where s is the activity coefficient of the solute in the matrix .. For dilute solutions or solutions

which obey Henry’s law, s™ is constant, so that [' becomes

ov” 1— P
() () 2s)

and for sufficiently small values of ¢

ov’
N=———— 2.1
kT (P — cP) (2.10)

This form has been used by Trivedi [1970a,b] as reviewed in next sections.
Thus, following Henry’s law, the concentration in the matrix adjacent to a spherical par-

ticle, including the capillarity effect, is

or
2P = (1 + —) P (2.11)
r

A discussion of the concentration change for needles and plate type precipitates will be pre-

sented in later sections.
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2.4 Theories of diffusion—controlled growth in binary systems

2.4.1 Zener’s theory

The presence of a concentration field around the particle (Fig. 2.2) must induce diffusion;
the rate of diffusion determines the precipitate growth rate. To describe this processes mathe-
matically, a function ¢{x,t} is defined, this represents the concentration at any point z in the
matrix, assuming one dimensional growth along z. Thus, the diffusion equation (Fick’s second

law) has to be satisfied:

% = DVic{z,t} (2.12)
where, one of the boundary conditions of this equation is ¢{z,0} = ¢, where ¢ is the average
solute concentration in the matrix, and D is the diffusion coefficient. Data for D can often be
found in the published literature, e.g. for diffusion in iron, Fridberg et al. [1969] have published
an extensive list of element diffusion coefficients.

A solution to the diffusion equation for precipitate growth in a spherical system was derived
by Zener [1949]. Assuming a particle radius increase proportional to ¢t'/? (parabolic growth),

and a radial symmetry, the concentration field can be expressed by the function ¢{t, R}, where

R is the radial distance in a spherical coordinates system. The general diffusion equation is

where j = 1,2, 3 for one, two or three—-dimensional growth. Considering that the interface is

then reduced to

at R = r, the boundary conditions for equation [2.13] are
cAt,ry=c?, c{0,R}=¢

Zener showed that the concentration varied with distance as follows:

¢ {R/(D1)'/*}

e T

(2.14)

where ¢; measures the degree of advancement of a moving interface and is given by

oo} = [ €iel=€mag
The kinetic equation that describes the advance of the interface is

g(eP? — Py = D(g—;) . (2.15)

11



where g is the growth rate of the particle. The solution to equation [2.15] using equation [2.14]
is
r=a;(Dt)'/? (2.16)

where a; is an adimensional growth parameter given by

, (=o3/4)
(a7 = 27
99]'{04]'}

and € is the dimensionless supersaturation given by the relation

— P
0 =

cPo — cof

Zener obtained several asymptotic approximations of the value of a; for one and three dimen-
sions (j =1,3), > 1 and a < 1 [Zener, 1949].

Another approximation is to consider de/9R as constant (Fig. 2.5). As a result of this
assumption Zener [1949] obtained a “natural” growth parameter a7, which expresses the growth

law for a plane interface. This approximation has a prominent place in literature.

Concentration

Distance

Fig. 2.5: Constant gradient approximation Zener [1949]

2.3.2 Zener model for needles and plates

Another important theory for needles and plates of constant diameter or thickness has

been given by Zener—Hillert. In this model, equation [2.15] is simplified as

D
oD

Ba aBy —
g(c”® — ") = Ac
( ) Yy

(2.17)

where Ac = — 2P and yP is an “effective diffusion distance” which is assumed to be propor-

tional to r, i.e. y© = C,r, where C| is a proportionality constant; because solute is partitioned

12



to the sides of the needle or plate, it is assumed that y” remains constant with time for a nee-
dle or plate of a given thickness. Given that ¢2P is the capillarity corrected concentration

(equation [2.16]) and defining r, as the radius at which growth stops

r,=2cPT/(e - c*P) (2.18)

DQ T,
= Gr (1 - 7) (2.19)

In this model, the needle plate tip radius is fixed during the stages of growth.

the growth rate is written as

The growth rate given by [2.19] is zero for r = r,. The maximum growth rate occurs when

r = 2r,, and is given by

. DQ
4G,

Zener assumed that the observed velocity will be the maximum possible velocity, given by

g (2.20)

equation [2.20] [Zener, 1946], and correspondingly that the diameter of a needle or the thickness
of a plate will be given by 2r = 4r_.

2.4.3 Hillert model

Hillert [1957] improved the solution given by Zener for needles and plates, by considering
an origin in the moving boundary using z; and z, as coordinates in the direction of growth
and normal to the plane of the needle or plate respectively (Fig. 2.6). In this case, the diffusion

equation can be expressed as

o|G)+ () o) =0 o

The solution to the differential equation is

oo

c—cf = /A{b} exp{(—oz,) }cos{bz,}db (2.22)

and the problem is reduced to the determination of the coefficients A{b}, but the boundary
conditions are not compatible with the existence of a steady—state solution. Hillert avoids the
difficulty by specifying an internal condition which satisfies the boundary conditions only in

the z, direction. The concentration in the plane z; = 0 is assumed to fit the equation
c— ¢ = Cyexp{—na2/16m*} (2.23)

where ', and m are arbitrary constants. Although this is a plausible form of the concentration
change, no real justification can be given for the assumptions. If it is used to replace the real

boundary conditions, the solution obtained is:

_ DQ P — 2P 1 Me (2.24)
9= "o m m '
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which is equal to Zener’s equation [2.17] if

2(cfe —¢
Cl - ( O[IB)
(o5 — ")
mo~r (2.25)

Fig. 2.6:  Zener-Hillert growth model [Christian, 1975]

The few theories discussed in this subsection have been used in contemporary computa-
tional models to describe the precipitation reactions. Capillarity and surface tension consid-
erations have been included; however, none of those theories are able to integrate successfully
those concepts in a single framework. A theory which does the task for needle and plate-type

precipitates is the one due to Trivedi, as described in the next section.

2.4.4 Trivedi theory of growth

To overcome the problems that arise from an incorrect selection of boundary conditions,
an appropriate coordinate system has to be chosen to solve the diffusion equation [2.12] for
needle and plate-like precipitates. The parabolic coordinate system is approximate, since the
shapes of needles or plates can be represented by a paraboloid of revolution or a parabolic
cylinder, respectively. A schematic representation of the parabolic coordinate system for a
needle is shown in Fig. 2.7, in which v and ¢é are the orthogonal coordinates, Z/r and R/r are
the dimensionless coordinates along which the needle grows or thickens.

The diffusion equation in the parabolic coordinate system is written as

0%c 1 dec  d%c 1 de
gt (v gt g+ (5-29) g5 =0 (2:20)

from which Ivanstov [1947] and Horvay and Cahn [1961] obtained a rigorous solution for an

isoconcentrate needle. The concentration can thus be expressed as:

d —e=(cP - z)% (2.27)

14



=0, 6=0)

{Z'+r=0, Rv=0)
“Zfr
N 3 R
4 4
5 5
- 6 6 .
y=4 r=4
P
3 3
_;" 7 2 2 7
a 1 r=0 1
3-8 5=8
LZ’FM-I/’Z(R»’:‘F
Fig. 2.7: Parabolic coordinate diagram and precipitate interface [Kotler

and Tarshis, 1969]

where ¢’ is the concentration field of the matrix for the case in which the interface has a
constant concentration equal to ¢®?, F, is the exponential integral function [Abramowitz,
1965] and p = g,r/2D is the Péclet number.

Temkin [1960] and Bolling and Tiller [1961] pointed out the non-isothermal nature of
the dendrite along the surface of the parabola as the curvature changes or, equivalently, the
composition change along the surface, and presented a solution for small Péclet numbers,
which was later extended by Kotler and Tarshis [1969] with an approximate heat flow (or mass
balance) equation.

Trivedi [1970a,b] accounted for the concentration change and interface kinetics in needle
and plate-like precipitates. The assumptions of this model are: (1) elastic strain energy and
anisotropy of surface properties are neglected, (2) diffusion of solute inside the precipitate is
negligible, (3) the concentration in the matrix is such that the capillarity of dilute solutions is
applicable, (4) the diffusion coefficient and the partial molar volume of solute are independent
of concentration, (5) the steady—state shape of the interface near the growing tip of the needle

can be approximated by a paraboloid of revolution.
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Growth of precipitate needles with diffusion of one solute

The boundary is defined at v = 1 (Fig. 2.7), where the coordinates are the result of the
transformation suggested by Kotler and Tarshis [1969]:

Z_(-8) R_
== . r_,ﬂ; (2.28)

as the surface of the needle is described by the equation

Z 1 1(R\’
=557 (2:29)

and the boundary condition (which allows for variation of solute concentration along it) is

Bry\ (2 +46%) g 1
— Ozﬁ - ¢ —p _—
AAh oy ( r ) (1102272 T, (14 60)172 (2:30)

where I' (equation [2.10]) is the capillarity constant, r is the radius of curvature of the needle

given by:

tip, g, is the velocity of the needle tip and y, is the interface kinetics coefficient for uniform
attachment kinetics, which is a measure of the mobility of the atoms as they transfer from the
matrix to the precipitate in the presence of a driving force.

The general solution to the diffusion equation [2.26] is

;o > e_mzlll{i—l—l,l,p'ﬁ} o w2

where W is the confluent hypergeometric function of the second type [Zhang, 1999], and L¢ is
a Laguerre polynomial [Abramowitz, 1965]. The coefficient A is evaluated using the boundary

condition given by equation [2.30], and its expression is

coB
F Pl2pl,, _Herfc\/_—l—\/_FDl{{ il 1il2zerfc\/_ +— p\/_FD{L{Z:I}—_l}}:I%erfC\/Z_) (2.32)

where I, erfc{z} is the normalised error function, and I'j, is the gamma function [Abramowitz,
1965].

In analogy to the treatments of the previous section, once an expression for the concen-
tration is obtained, it becomes possible to solve the flux balance equation. Considering the
concentration changes due to capillarity and interface kinetics, the equivalent equation to [2.15]

in the parabolic coordinate system is:

af
2p |:Cﬁoz . (Caﬁ T QQ + g_p>:| — (@) (2.33)
r M a’)/ ¥
° 5
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where <g—;) ., is obtained from equation [2.31]. The solution of equation [2.33] can be ex-

5§=0
9 T
— pel P <
Q=pe’E{p}| 1 + P QR {p}+ . QR,{p} (2.34)
i N e’

pressed as
where g, = p, (¢ — c®P), r, = 2¢°PT /(¢ — ¢*P) and Ry, R, are complex functions of p which

have been obtained numerically by Trivedi and are shown in Fig. 2.8.

100 T T T T

T T 1T 1T 17T

IIITII]

T

Qlo

llIlTlI

0.0I 1 Lol ! Loyl 1 14311l
00l 0.1 1.0 10.0

p
Fig. 2.8: Values of Sy, Sy, R, and R, Trivedi [1970a]

Growth of precipitate plates with diffusion of one solute

The methodology to solve this problem is essentially the same than for needles, but some
small differences arise from the selection of the parabolic coordinate system, because the steady
state shape of the interface near the growing plate tip is approximated by a parabolic cylinder.
The rest of the assumptions for needle precipitates hold.

Instead of the transformations stated in [2.28], the transformations z = (X — g,t)/r and
y = Y/r are used, where ¢ stands for time, and X, Y are the fixed Cartesian coordinates.

The diffusion equation is thus:

&_}_&_}_2 5%_ &
aez Tz TP 5o T Tay
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where the parabolic coordinates (£,n) are now the result of the transformations

SV PR

The general solution of the diffusion equation is [Trivedi, 1970b]:

o= = Y, N ) (2.35)

m=0

where H,, represents a Hermite polynomial,

2c2PT p?/2 (—1)™ 1 3 3
fan = g (7 43) o (e ) w(me 3 20)

r o

g, pt/? (=)™ 1 1 1
—}—H—ppT((sz)!FD(m—l—i)FD(m—l— 5)‘11(7714— 5,1,])) (2.36)

where I'j; and W are the gamma function, and the confluent hypergeometric function of the

second kind, respectively.

Similarly, the flux balance equation is obtained as:

afr g Jdc
(v
e (e e )] = (5).

The final relation is [Trivedi, 1970b]:

g
Q = /mpe’erfc{,/p} [\1’/{— QS {p}+ %QSQ{p}] (2.37)

v k%3

where S, and S, are complex functions of p, which are plotted in Fig. 2.8, and
r,=cPT/(E - c*P) (2.38)

where I is the capillarity constant (equation [2.10]), but [2.38] is different from the needle r, by
a factor of % This is due to the fact that a parabolic cylinder has a single radius of curvature

at the tip, whereas the paraboloid of revolution has two radii.

Discussion of Trivedi’s theory

Equations [2.34] and [2.37] possess three terms in the right hand side; terms 7, iv represent
the solution to the kinetics equation when interface kinetics and capillarity effects are absent,
while terms 77, v and 777, vi account for them, respectively.

Purdy [1971] and Simonen and Trivedi [1977] have compared Trivedi’s theory against
experiment by measuring the lengthening rate of « needles in ordered ' Cu-Zn. Purdy [1971]

18



assumed g, = oo and a value for o, and calculated r, with equation [2.8] (non-ideal solution).
His results match experimental measurements very well. Simoen and Trivedi [1977] performed
measurements over an extensive range of temperature, and found their results approximately

match experiments.

2.5 Theories of growth in multicomponent systems

When a variety of components diffuse into a spherical particle, equation [2.13]

o n )
has to be satisfied simultaneously for : = 1,2, ..., components; the terms ¢; and D, stand for
the concentration gradient and diffusion coefficient of component i. The solution to the system
given by [2.39] has been presented by Coates [1972, 1973a,b] for a ternary alloy. He particularly
considered the case where the two solutes have different diffusivities. In order to conserve the
conditions at the interface, it becomes necessary to define two growth rate constants a4, and

a5, rTepresenting components 1 and 2 respectively:
r= g/ Dyt and T = Ogy/ Dyt (2.40)

with agy = v/ D;/Dyas,; i.e. they are dependent only on the ratio of the diffusion coefficients
of both species.

The solution to equation [2.39] is thus given by the simultaneous solution of

1 1 1 2 .
Q; = —aj; expy —a3, o | — exp _%il ﬁerfc 9si (2.41)
2 4 s, 4 2 2

for i =1, 2, where €, is the supersaturation referred to component 7 and can be expressed as

_ af
C. — C:

Q=—-"— 2.42
P _ 2P ( )

where ¢; is the average composition of component ¢ in the alloy, and c?ﬁ, cfa are the concen-
trations of component 7 in « in equilibrium with g, and 3 in equilibrium with «, respectively.

In order to illustrate the influence of different diffusing coefficient ratios D,/D,, on an
isothermal section of a ternary phase diagram, Coates introduced the concepts of interface—
composition (IC) and interface—velocity (IV) contours [1972]. All alloys (¢;,¢,) with a com-

position lying on an IC contour would involve precipitate growth with interface compositions
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Fig. 2.9: Schematic representation of an IC contour in a ternary system
[Coates, 1972].

Fig. 2.10: Schematic representation of an IV contour in a ternary system

[Coates, 1972].

P and ¢*? defined by the same tie-line (Fig. 2.9). On the other hand, the parabolic growth

parameters oy, and as, are identical for all alloys which lie on an IV contour (Fig. 2.10).

IC and IV contours can be obtained by proposing a value of as,, and obtaining oy, =

v/ D, /Dyas,, and using them to solve equation [2.41] for i =1, 2.

IC contours for a given tie-line are plotted for a variety of diffusivity ratios in Fig. 2.11; as
D,/D; — oo, the IC contour tends to become composed of two straight segments defined by
2, =0 and ©; = 1. In the region where Q, ~ 0, ¢, — c?ﬁ ~ 0, the fast diffuser is keeping pace
with the slow diffuser by virtually eliminating the driving force (2, — cga ~ () for the diffusion
of the fast diffuser; the rate is then determined by the slow diffuser. For Q, ~ 1, ¢ ~ Cfa

so that the slow diffuser can keep pace with the fast diffuser by increasing the concentration

gradient of component 1.
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Fig. 2.11: IC Contours for different ratios of diffusivities [Coates, 1972].

2.6 Theories of coarsening

The earliest application of quantitative ideas to the coarsening process of metallic precip-
itates was by Greenwood [1956]; a few years later, the most widely used theory was developed
independently by Lifshitz and Slyozov [1961] and Wagner [1961] (LSW theory). Marqusee and
Ross [1983] presented an alternative analysis using a time scaling technique to derive the power
law time dependence and distribution function for the size of the particles of the new phase;
their results were extended by Umanstev and Olson [1993] for multicomponent systems. The
solution method they used was to define a particle radius distribution function f{r,t} to which
they applied the continuity equation

of =0 [, or _
54_%{][%}_0 (2.43)

which has to be satisfied along with the flux balance equation [2.15] and a mass balance equa-
tion. Their results are for small volume fractions of transformed phase, and can be expressed

[Marqusee and Ross, 1983] as

7t} = (2/3)*Kt + O{1}, K =20V, /® (2.44)
A{t} = 30V, )30 /3713 L 0{172/3)} (2.45)
N{t} = (3p®d/4no)t~" + O{t~*/3} (2.46)

where T is the average precipitate radius,
Afey =Y el (ui{e} — ui{e’}) (2.47)
i=1
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is the cumulative supersaturation of the alloy, V, is the volume of the precipitate phase,

NA{t} is the number of precipitate particles and @ the limiting value of the precipitate volume

fraction. The scalar parameter ® is defined as

"\ o oziuia' o o
o=Y"%"¢f D—j(cf —c2?) (2.48)

ji=2 =1

Opi

oh , characterises the coarsening resistance of the precipitate, and depends
7

where p7; = ( )T -
3175Ck

upon diffusion mobilities and thermodynamic interactions between species.

Referring to equations [2.44-2.46], these are reduced to those obtained by Lifshitz and
Slyozov [1961] when the terms O{1}, O{t=2/3} and O{t=*/3} are neglected.

Morral and Purdy [1994] have added the effects of off-diagonal terms of the diffusivity,
producing expressions consistent with [2.44-2.46], where the coarsening rate coefficient is given

by:

20V,

K= Beram) A

(2.49)

In the notation used here a matrix A can be expressed as (A], [A] or [A), which refer to a row,
square or column matrix, respectively; thus [(G] is a square matrix containing the elements

0*Ge
i 8ci80j = [¢]

[D] = D;; is the square diffusivity matrix and (Ac®?] = (¢ —¢*P]. Through insertion of equa-
tion [2.49] in [2.44] Morral and Purdy recognised that the particle coarsening is independent of
the solution thermodynamics of the matrix phase for the multicomponent phase. It depends,
as for binaries, primarily on surface tension, tie-line length and on the diffusion matrix.

The coarsening kinetic equations developed so far neglect changes in chemical potential of
the precipitate phase, and its composition shifts. New theory has to be produced to account for

these, and the effects it produces on the calculated thickening rates need further assessment.

2.7 The Avrami theory

Once the precipitates grow and reach a considerable size, impingement starts, raising
mutual interference between the growth of independent particles. One of the first successful
approaches to describe such processes was given by Avrami et al. [Christian, 1975]. This
treatment introduces the concept of extended volume which is widely used in precipitation
kinetics modelling. It considers, as well, the dependence of the growth rate on the particle

shape and the nucleation rate.

22



In order to produce expressions to describe the precipitation kinetics when mutual in-
terference between the particles is present, it is first recognised that the growth curves for a
transformed product are similar to Fig. 2.12; they are characterised by an induction period 7
at the intersection of the linear region and the abscissa (time axis). At time ¢ = 7, the first
products will form, and thereafter, the size of the nucleus formed will increase continuously.
Defining I as the nucleation rate per unit volume, and g as the growth rate, and assuming that
the particle will grow at the same rate in all directions, for ¢ > 7, the volume of a 3 region is
v, = 43’rg3( — 7)3. In the whole assembly, during the initial stages of transformation, when
VP <« V the interference of neighbouring particles can be neglected, so the volume increment
dVP = v_IVedr. In this case, V®, the volume of the matrix, is almost equal to V, thus the

total volume transformed at time ¢ is

:§/ (t — 1)3dr (2.50)

Equation [2.50] can be integrated assuming that I does not vary with time, and the result is
C=VP/V = (n/3) 14" (2.51)

where ( represents the volume fraction transformed at time ¢. The rate of transformation

according to this equation rises rapidly in the initial stages.

/
4/
7
yi

~
—
gt
T

Linear dimension of transformed region

Time, t

Fig. 2.12:  Schematic growth curve for a product region [Christian, 1975]

In real cases, however, it is necessary to consider the mutual interference of regions growing
from separate nuclei. When the regions touch, they develop a common interface, over which

growth ceases, although it continues normally elsewhere. During the time d7, when IV <dr
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new transformed regions are nucleated, IV ?dr regions would have nucleated in the transformed

portion of the assembly. Then, the extended volume of the transformed material V,° is
VP = v I(V+VP)dr = VP = ?“ / I(t—71)%dr (2.52)

which accounts for the transformed volumes occurring in « and those regions of # had not
transformation previously occurred there. The extended volume can thus be visualised as a
series of volume elements having the same limiting surface as the actual transformed volume
but growing “through” each other. The extended volume is represented in Fig. 2.13 where a

new region (say ) may be formed in regions which are already transformed (say ¢ and d).

time =t time = t+ At

Fig. 2.13: Two precipitates have nucleated together and grown to a finite
size in the time . New regions ¢ and d are formed as the original particles
grow, but @ and b are new particles, of which b has formed in a region which
is already 3 [Robson, 1997d]

It is necessary to find a relation between the extended volume V/ and the real trans-
formed volume V?. Consider any small random region of which a fraction (1—V*?/V) remains
untransformed at time t. During a further time dt, the extended volume of 3 in the region will
increase by dV?, and the true volume by dV?. Of the new elements of volume which make up
dVP, a fraction (1 — V?/V) on the average will lie in previously untransformed material, and
thus contribute to dV?, while the reminder of dV” will be in already transformed material.

Therefore
vl =(1-VP/V)dv/ = V= -Vin{l —-V°/V} (2.53)

Substituting into [2.52], we obtain

—In{1-¢(}=—y /I(t —7)%dr (2.54)



Assuming that [ is constant:

C=1—¢l-ma’1t"/3) (2.55)

I will not in general be constant; it is possible that nucleation occurs only at certain
preferred sites in the assembly, which are gradually exhausted. If there are N sites per unit

volume of the v phase at the beginning, and N, remaining after time ¢, the number disappearing

in a further time interval dt is dN,. = —N_v,dt, where the frequency v, gives the rate at which
an individual site becomes a nucleus. Thus N, = Noe(_l‘lt), and the nucleation rate per unit
volume is

I= —dd—zj = N v el=11 (2.56)

Substituting [ into equation [2.54] and integrating by parts, Avrami obtained the expres-
sion:

2,2 3,3
(=1- exp{(87rNOg3/1/f) [e‘”lt - 1+uyt- ml” + i] } (2.57)

A generalisation of Avrami’s theory has been carried out recently by Kasuya et al. [1999].

Redefining the variables as
P P
‘/z e ‘/ie _ e __ e
G=7v» G=7 z—zgcj and 2 —2@ (2.58)
i= i=

where V; (i = 1 to P) is the real volume of the product phase ¢, and V£ is its extended volume.

From the same analysis as before (equation [2.53])
4G, = (1 - 2)dc: (259

the real volume change can be calculated using the relationship:

dv?
¢ = / dz exp{z©}dz° (2.60)

Kasuya et al. obtained analytical solutions of equation [2.60] for special cases where the
extended volumes of the different phases (¢ for i = 1 to P) can be related. Thus, for n = 2
and treating (i as an independent variable, if ({ and (; are related linearly according to

¢5 = k,(f — ky, where k, is a positive constant and k, is zero or a positive constant. Equation

[2.60] can now now be integrated; since (§ cannot be negative. For 0 < (f < ]}:—f
¢, =1—exp{—¢{} and ¢, =0 (2.61)
and for (7 > }2—?
k k 1 .
Clzl—ﬁexp{ﬁ}— k1+1exp{—(k1+1)fl+k2} (2.62)
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Examples of precipitation phenomena with simultaneous reactions related linearly can be found
in ferritic steels [Kasuya et al. al., 1999]. Kinetic predictions on secondary hardened steels for
power plants with those linear relations have been carried out by Robson and Bhadeshia
[1997b].

Kasuya et al. obtained as well analytical relationships for ¢; and (,, when ({ and (5 are
related parabolically, however, no example of such relationship seems to appear in actual trans-
formations. Anyway, equation [2.60], when solved numerically, provides a general methodology

to calculate the real volume from the extended volume for any number of phases.

2.8 Summary

Well established theories of precipitate nucleation, growth and coarsening have been re-
viewed in this chapter. The thermodynamic equilibrium relationships describing the initial and
final states of the precipitation process are defined; and the Avrami theory of soft impingement
has been introduced. The necessity to develop new theory to extend the reviewed concepts to
multicomponent alloys where simultaneous reactions occur has been indicated. Such theory is
presented in the next chapters, and incorporated into a new model to predict the kinetics of

complex alloys.

Addendum

Mullins, W. W. and Sekerka, R. F. (J. Appl. Phys. 34 [1963] 323) have provided a quasi steady
state solution for spherical growth with capillarity. They solved equation [2.12] assuming
dc/0t = 0, which is equivalent to Laplace’s equation. Coriell, S. R. and Parker, R. L. (Crystal
Growth, ed. Peiser, H. S., Pergamon Press, Oxford 1967 p. 703) have even extended this
solution to account for interface kinetic effects. Their solutions are similar to the analytical

solution presented in Chapter 3, equation [3.12].
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CHAPTER THREE

Spherical growth with capillarity effect

3.1 Introduction

During precipitation processes, there is usually a combination of many kinds of particles
with a variety of shapes, ranging from needles and plates to spheres. Many of the precipitates
approximate to a spherical shape. Although attempts have been made to estimate the kinetics
of spherical particle precipitation in power plant steels [Robson and Bhadeshia, 1997a,b] there
is no analytical solution for the growth of a sphere with capillarity included, since for spheres
the radius of curvature also defines the size of the particle [Zener, 1949]. The Gibbs—Thompson
capillarity effect is due to the curvature of the interface, which influences the equilibrium com-
positions at the particle/matrix boundary. A consequence is that small particles will grow less
rapidly than large particles even when the far—field concentration is identical for all particles.
Some quite elegant work by Miyazaki and co—workers [1996, 1999] has shown experimentally
that the capillarity effect is seminal in the development of precipitation reactions.

Thus, although Zener [1946] recognised the importance of capillarity, and even though cap-
illarity features strongly in the theories for the growth of needles and plates [Trivedi, 1970a,b],
the author is not aware of any corresponding theory for spherical precipitates; in this chapter
an approximate analytical solution for ideal solutions will be presented, and its range of valid-
ity will by assessed numerically. Some of the equations presented in Chapter Two are repeated

here for the sake of clarity.

3.2 Approximate analytical solution

For spherical particles, Fick’s second law can be written in the spherical coordinate system

dc D 0 , Oc
it R? aR{R 8R} (3-1)

as:

Since the concentration field in the matrix is a function of time and the radial coordinate, this
can be written as ¢ = ¢{t, R},

c{0,R}=7¢ (3.2)
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2c0PT

c{t,r} =P +

where I' is the capillarity constant given by [Christian, 1975]

ovP 1— 2P
r— ( i ) (Cﬁa . Caﬁ) (3.4)

The boundary condition of equation [3.2] indicates that, as the precipitation starts at

t = 0, the concentration everywhere will be equal to the average concentration of the alloy;
equation [3.3], which has been defined in analogy to capillarity corrected concentrations of
needle and plate-like precipitates [Trivedi, 1970a,b], accounts for the concentration change as

the particle approaches to a critical radius r, which can be expressed as

2c2PT
Po= (3.5)

¢ T—cP

This is obtained by solving equation [3.3] for ¢{t,r.} = €.

As the particle radius approaches the critical radius r = r, the concentration in the matrix
at the boundary tends towards the average concentration so that growth becomes impossible
[Christian, 1975]. This situation can be shown schematically in Fig. 3.1, where Fig. 3.1a
represents the case where the interface is flat, Fig. 3.1b shows the case where r = 2r_, and

Fig. 3.1c presents the case where r =r,.

Cﬁa o — Cﬂa o r— Cﬂa v e

Tl
o
=
= o
)
=
~
©

C{l , ;ﬂ} — ca,@ B
r R r R ¥ R
() (b) ©)

Fig. 3.1:  Schematic representation of the concentration gradient as capil-

larity effect is present. (a) Flat interface; (b) curved interface with r = 2r ;

(c) curved interface with r = r,,.

Dimensional arguments [Christian, 1975] and experimental observations [Fujita, 2001] of

spherical precipitate growth, have shown that the particles display a parabolical rate. The
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solution to equation [3.1] given by Zener applies a similarity transformation [Zwillinger, 1998]

where the radius varies parabolically with time:
r=ayVDt (3.6)

where a; is a dimensionless growth parameter. The concentration c{t, r} that satisfies equation

[3.1] and the boundary conditions given by equations [3.2, 3.3] is then:

ﬂ) - a] oAR/ Dt} (3.7)

c{t,R}=¢+ [(caﬁ + o]

r

where
M%}:iﬂm{—ﬁ}—l@mﬁyﬁ} (3.8)

where erfc is the error function. By substitution in equation [3.1], it is to be noted that the
solution given by equation [3.7] is valid only when ¢{a;} is constant, and thus if a4 is. The
forthcoming derivations were done following this assumption.

The rate at which solute is incorporated into the growing precipitate must equal that

arriving by diffusion to the interface. Therefore,

2c08T Jdc
o _ | a8 _ple
oo = (4250 )| = 057

where g = dr/dt is the particle growth rate. The concentration gradient given by equation

(3.9)

R=r

[3.7] can now be substituted in [3.9], from which an expression for a; can be obtained. After
some algebra, the next equation is obtained.

£ [1—92] =Q-Q= (3.10)

r

where f; is a complex function of a4 given by
1 1
fi = 5053 exp{ 10‘:23}¢{0‘3}

Provided that the phase diagram is known, equation [3.10] is now a function of a; only,

which can be expressed as:

Q= h (3.11)

14 (re/r)(fi = 1)

which was solved numerically as shown in Figs. 3.2 and 3.3 for large and small growth param-

eters, respectively. The computer program that provided these values is shown in Appendix 1.
Approximately spherical particles precipitate at small supersaturation values in many

alloys, such as secondary hardening steels [Robson and Bhadeshia, 1997a,b]. It is desirable
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therefore to obtain a simple asymptotic relationship for equation [3.11] as © <« 1. Fig. 3.3
shows that a; — 0 as @ — 0. Using the Taylor’s series expansion of exp{%a%} around zero,
and expanding erfc{a;} as a3 — 0 [Abramowitz, 1965] it can be seen that f,{as} ~ 1a3.

Thus:
(3.12)

10

0.8

0.6 -
c :
0.4 P
r /rC:| nfinity L
-------- r/r =10 F
02 e E
- —--rir=11 [
Cc [
— =r/r=101 [
¢ r

O-O |||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 2 4 6
93
Fig. 3.2:  Variation of the growth parameter as a function of the supersat-

uration and normalised radius.

In order to assess the effect of the particle radius on the growth rate, the value of ay
against the tip radius for given values of €2 is plotted in Figs. 3.4 and 3.5 at large and small
supersaturations, respectively. The solid lines adjacent to each dotted line in Fig. 3.5 represent
the values calculated using equation [3.12] for the respective supersaturation.

The capillarity correction on the parabolic growth parameter (ay) is shown in Figs. 3.4
and 3.5. It can be seen that for small values of r/r,, there are differences of up to an order
of magnitude when compared with a model without the correction. Naturally, when r > r,
equation [3.11] reduces to Zener’s equation.

Figs. 3.4 and 3.5 show that ay varies with r/r_, which contradicts one of the original
assumptions. The error arises when equation [3.7] is inserted in [3.1], giving an additional

term in the left hand side (Jc/0t) because oy actually varies with time. However, the change
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saturation and normalised radius. The emphasis here is on small values of

Q.

Variation of the growth parameter as a function of the super-
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Fig. 3.4: Variation of the growth parameter with the particle radius at large

supersaturations.
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0. 001

0. 0001

r/r
Fig. 3.5: Variation of the growth parameter with the particle radius at small

supersaturations.

of a; with time is expected to be quite sluggish, at least when capillarity is prominent, so this
error might be small.

The author is not aware of an analytical method to rigorously solve equation [3.1] with
boundary conditions [3.2, 3.3], but given that the behaviour of the solution seems plausible,
it is desirable to measure its accuracy. This was done by numerically solving equation [3.1] as

presented in next section.

3.3 Numerical solution

Tanzilli and Heckel [1968] have presented a numerical solution for sphere growth in the

absence of capillarity. Thus, equation [3.1] can be expressed as

il ¢ _ Ny—n y sz—l—l —ci_l X gt
At L—r 2
cj —2¢i + cj D cj — cj
D > n+1 n n—1 % n+1 n—1 3.13
+ L-nNg oy @ < (L -n)/N, (3:13)
No

where n = 0,1,2,..., N, are the nodes that divide the matrix phase in N, elements each of

length AR (Fig. 3.6), j is a time interval, ¢/ is the concentration in n at the time interval j,
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At is the increment in time, L is the zero mass transfer boundary at the matrix, i.e. where
Cn, = Cny41, and g7t1 the interface velocity at the time interval j 4 1. The time increment

was set to satisfy the restriction for stable and non—oscillatory solutions to be

At <0.25 A;)%Q (3.14)
C
N
P —
C
C; _} ARZZL—TT"
% 0
=R
n=0 =N,
R=r R=L

Fig. 3.6: Definition of finite-difference terminology.

When capillarity effects are considered, the mass transfer equation [3.9] is similarly ex-

pressed as ' ' ‘
pdtl _ i _ D y —ch +4c] — 3¢} (3.15)
At Cﬁa — Cj Q(L — T)/NO '

where 1/ is the particle radius at time interval j and

g emen(1-5) 10

rJ

where 7 is given by equation [3.5], ¢}, the solute concentration at the matrix interface (Fig. 3.6),
which is equivalent to the boundary conditions met by setting the initial concentrations of all
the nodes equal to € at ¢ = 0 except ¢, which is calculated assuming an initial particle radius of
r/r. = 1.01. Equations [3.13, 3.15, 3.16] were thus simultaneously solved and their results are
shown in Fig. 3.7, where the variation of the growth parameter ay is plotted as a function of
r/r, for a variety of compositions (Fig. 3.7a); @, was scaled with a starting radius of r® = 1.01
and Q with values of ¢#® = 1 and ¢®P = 0. The variation of the interface velocity g with r/r,

is shown in Fig. 3.7b. The convergence of equations [3.13, 3.15, 3.16] was achieved when as At
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Fig. 3.7: Finite difference solution for (a) ag and (b) g. The dotted lines

represent calculations using the analytical solution.

was decreased to a convenient value, a negligible change in g/ was produced, and the value of
Ny was such that ¢y, ~ ¢ The program that was developed to perform such calculations is
shown in Appendix 2.

In Fig. 3.7a a4 approaches asymptotically the value predicted by Zener’s theory; this is
expected as for large r/r, the capillarity effect becomes less important. Consistent with this,
the velocity (Fig. 3.7b) approaches a value given by g = Da?/(2r) at large radii, while it
approaches zero for small values as the driving force for growth vanishes due to capillarity.

The accuracy of the predictions given by the analytical solution is illustrated in Fig. 3.7b
where g is plotted with dotted lines against r/r, for the indicated values of Q2. The approximate
values given by the analytical method adequately predict the velocity trends; in the range of
solutions observed, the maximum error was of the order of 11%; thus the analytical solution

may be used for calculations where large precision is not required.
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Fig. 3.7 shows that the largest correction for a,, when capillarity is present, is for 1 <
r/r, < 10. At this stage the particles are quite small, and the inaccuracy that arises from
using the analytical solution is very low, thus this can be applied to account for capillarity in

alloys such as steels with an error comparable to the resolution of most electron microscopes.

3.4 Summary

An approximate analytical solution for the growth of spherical particles with capillarity
has been presented. The theory developed can be applied to dilute ideal solutions. It has been
shown that the error involved in the approximation is small, and its application to calculate

the kinetics of spherical growth is plausible for many cases.
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CHAPTER FOUR

Growth of needle and plate—shaped precipitates

4.1 Introduction

There is a variety of models dealing with the diffusion—controlled growth of precipitates
with shapes approximating those of needles or plates. These models have been reviewed in
the second chapter. The most comprehensive theory is due to Trivedi [1970a,b], in which the
needle is assumed to be in the form of a paraboloid of revolution and the plate as a parabolic
cylinder (Fig. 4.1a,b). The solutions he obtained for specified conditions are shape—preserving
when the tip radius is several times the critical value (equation[3.5]) and in this context they
allow rigorously for changes in capillarity and interface kinetics effects as the curvature of the

interface varies along the parabolic surfaces.

@ -’ ®) ©

\V/

Fig. 4.1: Shapes used to represent needle and plate like precipitates. (a)

Paraboloid of revolution; (b) parabolic cylinder; (c) radius of the parabola tip.

Consistent with many experimental observations, the theory predicts constant lengthening
rates because the needle or plate tip advances into fresh parent phase as solute is partitioned.
However, the numerical components of the solutions obtained by Trivedi [1970a,b] are limited
to large values of supersaturation. In practice, many precipitation reactions in technologically
important applications occur at small supersaturations [Robson and Bhadeshia, 1997¢c]. The

method and equations that Trivedi used to solve this problem are shown in section 2.4.4,
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whereas the fine points of his mathematical treatment are introduced in the forthcoming
sections, the extension to low supersaturations is then presented, where simple asymptotic

relationships were derived to predict the kinetics at this regime.

4.2 Theory for needle growth

The equation relating the Péclet number p = gpr/QD to the dimensionless supersaturation

0 = pexp(p} By} | L+ POR: {p) + 20 R, ) (4.1
k3 N———

Q is given by:

i
where g, is the lengthening rate, r is the radius of curvature at the tip of the paraboloid, and
D is the diffusion coefficient of the solute in the matrix phase. r = 2f,, where f, is the focal
distance (Fig. 4.1¢), which is defined uniquely for a parabola lengthening along the 7 direction,
and thickening along the X direction [Horvay and Cahn, 1961]. g, = u,(¢—c*?) is the velocity
of a flat interface during interface controlled growth, i.e., when almost all the free energy is
dissipated in the transfer of atoms across the interface, so that the concentration difference in
the matrix vanishes; and p, is the interface kinetics coefficient.

For curved interfaces, the growth rate is a function of the interface curvature via the
Gibbs—Thomson effect. The curvature at which the growth rate becomes zero is 1/r,. The
functions R, = %Nl{p} —1land R, = ﬁNZ{p} — 1 were evaluated numerically by Trivedi
[1970b] to deal with the fact that the curvature of the interface varies along the surface of the
paraboloid of revolution.

The values of N;{p} and N,{p} are [Trivedi, 1970a]

Up{n+ 4} U{n+ 1;2;p}

Ny {p} = 2372 exp{p} Z ol 1} 207, erfe {\/—}q}{n i) (4.2)
Ny {p} = 2p3/2 exp{p} Z 2\/512n+1e1‘fc{\/]7}% + Ny{p} (4.3)

where ', I, erfc, and ¥ are the gamma, normalised integral error [Abramowitz, 1965], and
confluent hypergeometric function of the second type [Zhang, 1996], respectively.
Referring to equation [4.1], the term ¢ is the Ivanstov [1947] solution where the capillarity
and interface kinetics are neglected; terms 227 and ¢2 account respectively for those effects.
Equation [4.1] does not give a unique answer for the growth rate g, which depends on the

tip radius r. For solid—state transformations one might adopt Zener’s assumption [Zener, 1946,
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Bhadeshia, 1985a,b] that the the radius of curvature is that which gives rise to the maximum
growth rate. This is obtained by differentiating equation [4.1] with respect to r and setting
dg,/0r = 0, which gives

0= (o) = (22 R} - Sratoh+ 1) )+ T2 o1

=_ aﬁ
where ¢*{p} = pexp{p} E,{p} and ¢* = “"2(}637/?) is a parameter which indicates the relative

magnitudes of the interface kinetics and the diffusion effect. Equation [4.1] can be expressed

as well using the parameter ¢*:

0=} |1+2% Lar ) + o, )] (4.5

The values of the functions R, R, and R} and R/ were given by Trivedi [1970b] for p > 0.1;
they are used to solve simultaneously equations [4.4] and [4.5], which give in turn a unique

solution for p and ;- as a function of 2.

4.3 Theory for plate growth

Trivedi’s model for a parabolic cylinder takes a similar form:

= /mpexp{p}erfc{,/p} L+ gpr {r}+ CQb 2{p} (4.6)

i'u —_— h/—’

v v

where S,{p} = ﬁMl{p} — 1 and S,{p} = ;—pM2 {p} — 1 account for the change in curvature
along the parabolic cylinder [Trivedi, 1970b]. The terms v, v and vi account for the boundary
iso—concentrate solution, interface kinetics, and capillarity effects, respectively.

The functions M,{p} and M,{p} can be expressed as

12n+1e1‘fc{\/]_)}
I, erfe{,/p}

IQnHerfc{\/_}
1, erfc{,/p}

Similarly, equation [4.6] is differentiated with respect to to r, allowing dg,/0r = 0 to

My{py =23 T pin+ 1) nt 515} (4.7)

Myfp) = 230t ) Wint 3:2i0) (15)

account for maximum growth rate. The resulting equation is

= (¢°{p))" [ps ) - 15,0} + *'{p}]

where g°{p} = \/Tpexp{p}erfc{,/p} and ¢ = 2¢*. Equation [4.6] can be expressed in terms of

°{p} o) (4.9)

q to give
r r
Q= g°{p} [1 +E 08+ 7"952{1)}] (4.10)
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The values of the functions S, S, and 57, S were provided by Trivedi [1970b] for p > 0.1

and are used to solve simultaneously equations [4.9] and [4.10] from which p and - are obtained.

4.4 Extension for low supersaturations

To solve simultaneously equation [4.4] with [4.5], and [4.9] with [4.10] for small supersat-
urations, the functions Ry, R,, S; and S, must be evaluated for p < 0.1. Thus, a numerical
method was developed to obtain N;, N,, M; and M, for p < 0.1, the resulting values are
shown graphically in Fig. 4.2; the functions R, R,, S, and S, can now be evaluated and are
shown in Fig. 4.3. The computer programs that cast the values plotted in Figs. 4.2 and 4.3
are presented in Appendix 3.

1e+02 — — 1le+02
1e+01 - — 1e+01
1N i
Nl
let00{ M, — 1e+00
1 M -
16'01 T T THHTI T T THHTI T T THHTI T T THHTI T T THHTI T T TTTTIT 16'01
1e-05 1e-04 1e-03 1e-02 1e-01 1e+00 le+01
p

Fig. 4.2:  Values of functions Ny, N,, M, M,

Trivedi’s solution for p and r/r, can now be extended to small supersaturation values of
Q2 < 0.2 for needles (Figs. 4.4, 4.5) and Q < 0.4 for plates (Figs. 4.6, 4.7) through simultaneous
solution of equations [4.4-5] and [4.9-10]. Computer programs were written to perform the
task, and are presented in Appendix 4. The results show that as the supersaturation decreases,
the values of p and ;—c approach asymptotically to a curve; this effect is shown for very small

supersaturation values in Figs. 4.8, 4.9 for needles and in Figs. 4.10, 4.11 for plates.
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Fig. 4.4: Péclet number for needle maximum growth rate
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Fig. 4.8: Péclet number for the maximum growth rate of a needle as a

function of the supersaturation. Low supersaturation values.
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function of the supersaturation. Low supersaturation values.
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The low supersaturation behaviour displayed by Figs. 4.8-11 suggests simple relationships
to express Péclet number and tip radius for needles and plates in the low supersaturation
regime. This was investigated by expressing the transcendental functions in equations [4.4-5]

and [4.9-10] for low values of p, as described next.

Needles

Equations [4.5] and [4.4] can be expressed as follows:

r_ g{p [Up

r. Q- g{p} [Qq* R{p} + RQ{P}] (4.11)
() P 1 o

it [l ) - ) (.12

The asymptotic expansion of F| is expressed as [Abramowitz, 1965]
E =—7, -1 - —_—t
{p} = —7. — In{p} n§:1 i

where v, = .5772156649... is Euler’s constant and k& = exp{y.}, thus for p —» 0 F,{p} ~
—In{kp}, so g*{p} ~ —pIn{kp}. Furthermore, as p — 0, N;{p} — 1.4050 and N,{p} — 3.8410
[Trivedi, 1970a]. Equations [4.11] and [4.12] can be equated, and for p — 0
g}, —pin{kp}Q
Q—g{p}  Q+pln{kp}
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(g*{p})” —p* In{kp}
T iy <1 T (el

3.8410
4p

P
2q—*R1{p} + Ry{p} —

3.8410
2p?

P 1
—Qq—*Ri{p} + 5R2{p} - Ry{p} —

Thus, the dominant factor is the capillarity effect (term 7i7 in equation [4.1]). After some

algebra, the resulting equation can be expressed as

o _ 2p(n{kp})?

T {p) (4.13)

while from equation [4.11], in the limit of p — 0, the needle tip radius expression becomes

r 3.8410 QlIn{kp}

— = 4.14
r, 4 Q+pln{kp} (4.14)
Plates
For plate—shaped precipitates, equations [4.10] and [4.9] can be expressed as
r _ g°{p}Q [p ]
R AR U2 L N T 4.15
r, Q—g{p} q 1{} 2{} ( )
L F ] (4.16)
= 5 — Q1P —291Py — 92D .
re S tge{pr-1Ll ¢ P

The asymptotic expansion of erfc is expressed as [Abramowitz, 1965]:

erfe{\/p} =1 —erf{\/p} =1 - % exp{—p} ; T3 2:2n = 1)p2n+1

thus, for p — 0, erfc{,/p} = 1 - %\/]_), so g{p} ~ \/7p. Furthermore, as p — 0, M,{p} — %
and M,{p} — 2 [Trivedi, 1970b]. Equations [4.15] and [4.16] can be equated, and for p — 0

e, 0
Q=g 0} Q=D

(g°{p})*
et 4 gofpy -1

— 2ﬁp3/2

p - 2
=S + 5 - —
q 11p} 2P} T
p ! 1 a ! 4
—=5 + -5 -5 - —
q 11p} » 2P} 2P} p?
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Thus, the dominant factor is the capillarity effect (term vi in equation [4.6]). After some

algebra, the resulting equation can be expressed as

p=—0 (4.17)

o022 (4.18)

4.5 Discussion and summary

The analysis presented here provides the values of p and % for small supersaturations,
when the interface kinetics and capillarity effects are present. The results reveal the influence
of each effect and provide useful values for further calculations.

Equations [4.13-14] and [4.17-18] are useful in computing the growth rate and tip radius
for needles or plates for small supersaturations, e.g. the precipitation of needle—type particles in
secondary hardening steels. Some of these calculations were performed by Fujita and Bhadeshia
[1999], and Robson and Bhadeshia [1997a,b]; they used the Zener theory [1949] reviewed by
Christian [1975], which predicts the growth rate for needle precipitates in which a hemispherical
needle tip controls the particle growth, but without equilibrium along the interface as the
curvature changes. Such theory predicts a constant value of ;—C = 2 regardless of the magnitude
of 2, and p = %. Fig. 4.9 shows a difference of one order of magnitude compared to that model,
while Fig. 4.8 shows a value of p ~ 2.5 bigger than previous approximation.

To summarise, it is now possible to use Trivedi’s models to treat the precipitation of
plates or needles in circumstances where the supersaturation is quite small. Simple asymptotic
relationships have been obtained to calculate the growth rate and tip radius at small supersat-
urations, and have been shown not to depend on the magnitude of the interface kinetics effect,
as less driving force is available for volume diffusion, decreasing the lengthening velocity and

the resistance of atoms to transfer across the interface.
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CHAPTER FIVE

Growth in multicomponent systems

5.1 Introduction

Having developed the necessary theory for spherical growth with capillarity, and needle
and plate growth for low supersaturations with interface kinetics and capillarity, it becomes
possible to analyse the behaviour of multicomponent alloys. The present chapter provides
such an analysis along with the necessary theory to treat the case. Novel conclusions have
been obtained, for example that the maximum velocity hypothesis cannot be sustained in the

multicomponent scenario.

5.2 Thermodynamics of multicomponent systems with capillarity

In order to obtain the composition shifts in a multicomponent system, it is necessary to
obtain expressions for the Gibbs energy and chemical potential shifts due to capillarity for each
component. In analogy to the Gibbs energy increase per atom presented in section 2.3.2, the

change in free energy per mole of precipitate phase Ag” can be expressed as

dO
AgP = o— 1
9" =0 (5.1)

where the second term implies the rate at which the interfacial area O changes on the addition

of » moles of solute. The resulting change in the chemical potential of the solute in « is:

1-¢2f  dO
= —=>r _—o— 5.2
I'LT’ I'L C,/fa B C?’Gadn ( )

where p and p® are the chemical potentials for curved and flat interfaces respectively; ¢
and c2P are the capillarity corrected concentrations at the interface. The chemical potential

shift can be expressed as:

o a8
gy —p* =R, TIn (ﬁ> (5.3)

sl
were s and s are the activity coefficients when capillarity is present, and is neglected, respec-
tively. When expressions [5.2] and [5.3] are equated, equation [2.11] is obtained if the solution

is dilute enough to obey Henry’s law.
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Henry’s law is assumed in the following derivation of capillarity in multicomponent solu-

tions. The energy shift referred to component ¢ can then be expressed as

d.ni_ r

(5.4)

where n; is the mole number of component i and V; its partial molar volume. It follows that

in a multicomponent solution,

1—c2f 2V,
Pri = M§ = 55570 —— 5.5
sz‘ - Criﬁ r 59
o af
o o Sricri
pos — i = R, Tln (—chqﬁ) (5.6)

771

fff, P 52 and 57 hold the same meanings as before, but are referred to

[o} [e}
where pf, pfty e, e s

component 7. When Henry’s law can be applied, and if it is assumed that the solution is

sufficiently dilute to avoid interactions between the different solutes, equations [5.5] and [5.6]

T, oV. 1— P
aB _ _af ? : — 2 1
el =¢; (1 +— ) with I, = (R,MT) (cfa - c?ﬁ) (5.7)

and the critical radius becomes

reduce to

20207,
rop = i (5.8)
¢, — ¢,

Naturally, the value of r,; must be identical for all species of solute.

5.3 Multicomponent spherical growth

Multicomponent growth of spherical particles requires the solution of Fick’s second law
(equation [2.39]) for each i component, along with the mass conservation condition at the

interface, which can be expressed for each component as:

oc.
|- |=nga (5.9)
The boundary conditions to be applied are:
2¢7°T,
¢;{0,r} =5, and ci{t,ry =’ + i (5.10)

using the approximate solution method given in Chapter 3, it is obtained for each component

: 3 1 1 —a?, ‘

Qi = .le Where fli = QSZ exp —05:2)” — exp ﬁ _ ﬁel‘fc 0132

T+ 2 (fii = 1) 2 4 a; 1 3 2
(5.11)
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Equation [5.11] can be solved for any number of diffusing components, using the procedure
as follows. The problem is to determine the precipitate growth rate from an alloy of a known
composition. The equilibrium values of the components are not independent since they are
all connected by a tie-line of the phase diagram. From Gibbs phase rule, when T and P
are set, it follows that the equilibrium concentrations of C' — 2 components (C'is the number
of components of the alloy) can be varied, and the values of all others obtained from the
phase diagram, permitting all the supersaturations €2, to be calculated, and values of ay,,
i=1, 2, ,..., mto be obtained from equation [5.11]. It is required that the equations arising
from substituting i = 1, 2,..., C in equation [5.11] must produce the same particle growth

rate, a condition which is met when

317/ Dy = g0/ Dy = ... = a3oy/ D (5.12)

B

Thus, the problem is reduced to finding a set of compositions ¢]"”, c?‘[g,...,cg[i2 from which

equation [5.12] is satisfied, and the growth rate is obtained from

dr 1 D,
- = 50 = (5.13)

for any value of 1.

Effects in growth rate

Capillarity has the effect of reducing the driving force for transformation; it should there-
fore be revealed in plots of interface—velocity contours. Figure 5.1 shows that with respect to
a particular alloy labelled as ‘x’ in the phase diagram, the IV contours n = -8, —7,..., 7, 8
(g5 = 0.04(2)") shift towards greater supersaturations as capillarity is introduced. When the
diffusion ratio is large, it is apparent that an IV contour which lies in a regime where there
is no long-range partitioning of the slow diffuser, can be shifted into a regime where such
partitioning is necessary. This situation is shown in Fig. 5.2, in which the alloy labelled ‘x’
slows down from a velocity given by n~ 5, when capillarity can be neglected (Fig. 5.2a), to

n~ 1 when it is relevant (Fig. 5.2c).
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5.4 Multicomponent needle growth

The solution to the multicomponent growth of needles comes from the solution of Fick’s
second law which is substituted in the mass balance equation, each of these must be expressed

in parabolic coordinates for each component:

0%c, 1 de, 0%, 1 Jdc.
7 - 2. 2 2 ] 6 L — 0 5.14
372+(7+ m) aﬁaé?*(& pf)aé (5-14)
o A g Oc,
2p; |e* (c?5+2—2 ft —p) = ( ) (5.15)
T o v /) =1
tl \t/ §=0

where p, = gpr/QDi is the Péclet number of component 7. These equations have to be solved

under the next boundary condition

ap 2
P AN I I A
nhe e _< ' ><1+62)3/2+um< (T+5)17 19
1
11 2

It is observed that the isoconcentrate boundary solution corresponds to the case when ¢; and
t, are neglected; and when only ¢, is neglected the effect of capillarity with no interface kinetics
is present. Due to the complexity of the solution, the analysis of its behaviour is divided in
three cases of increasing difficulty: isoconcentrate boundary, capillarity, and capillarity and

interface kinetics.

5.4.1 Isoconcentrate boundary

The solution of equation [5.14] using boundary condition [5.16] and substituted in [5.15]

with ¢, =t, = 0 gives Ivanstov equation for i = 1, 2, ...,C' components:

Q, = p;exp{p;} Ey{p;} (5.17)

Since g, and r can only have single values, simultaneous solution of equation [5.17] for i =
1,2,...,C demands
D, =p,Dy=...=p-D, (5.18)

Consider now a ternary system, such as a steel. The influence of a difference in the
diffusivities of two components (for example carbon and a substitutional solute) can be seen
by varying p, and obtaining p, = B—pr, and plotting the results in the form of Coates interface—
composition (IC) contours for several values of D,/D;. Such results are shown in Fig. 5.3.

Thus, as discussed in Chapter 2, a needle-shaped particle with an isoconcentrate interface
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Fig. 5.3: Needle-shaped isoconcentrate particle IC contours for different

ratios of diffusivities in a ternary system.

behaves much the same as a sphere but with p,, p, given by the solution of equations [5.17—
18]. It is, however, not possible to determine unique values for g, and r, and the maximum

velocity hypothesis is not feasible.

5.4.2 The effect of capillarity

When capillarity is taken into account during needle growth, the corresponding solution

of equations [5.14-16] is with ¢, = 0, from which mass balance demands for each diffusing

component
r
Q, = p;exp{p;} E1{p;} [1 + 7092‘32{1%‘}] (5.19)
for i = 1,2, ...,C diffusing components. The use of the maximum velocity hypothesis gives
* 2T, 1 ) [ *
0= (") 2 (S Rpd + o) + L gy -1 (5.20)

fori=1,2,...,C, which gives a system of 2C’ equations in which r and g, are over determined.

The problem will thus be inverted to seek solutions consistent with equations [5.18-19].

Binary systems

First consider a particle growing at r/r, = 10 in a binary system, the corresponding
values of p as a function of Q given by equation [5.19] are shown in Fig. 5.4a. It is seen that a
minimum in 2 is present when the critical radius r, and the needle tip radius r = 10 X r_ are
maximum, as shown in Fig. 5.4b, where r, was calculated assuming ¢’ = 0.95, ¢*? = 0.05

r 13 _ _10 . .
Z7 = 1 x 107" m from the classical theory

2c26 ovP 1
ro =
€ E—coB\ kT cfo — cob
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Note that for a given value of €, there are two solutions for p, it is assumed by Trivedi [1970a,b]

that growth occurs at the value of p that produces the maximum lengthening rate.
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Fig. 5.4: Variation of (a) supersaturation and (b) critical and needle tip

radius with p for r/r, = 10.
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Fig. 5.5 shows a generic plot of equation [5.19], showing the variation of p with € and r/r,
in a binary system. With r/r_, = co the plot represents the Ivanstov solution, where r and 9,
cannot be defined uniquely. When r/r, = 10 capillarity plays a role in the growth process, Q2
is no longer a function that grows monotonically with p; as r/r, approaches to 1, capillarity

becomes prominent, and the growth process has to occur at large supersaturations.
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1e-02
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0.00 0.25 0.50 0.75 1.00
Q

Fig. 5.5: Supersaturation as a function of the Péclet number and tip radius

ratio.

Multicomponent systems

The Coates’ concept of interface-composition contours as represented in Fig. 5.3 cannot be
applied directly when capillarity is included in the calculations. In Fig. 5.3, the €2, term defines
the compositions at the growing interface via equation [5.17], and at the same time represents
the dimensionless supersaturations. Whereas €2, continue to represent the supersaturations
when capillarity is incorporated into the theory, the compositions at the interface are no
longer ¢®? and ¢?® (equation [5.17]) but rather the values the values ¢2” and ¢?® as modified
by capillarity. Therefore, the plots corresponding to I'ig. 5.3 are best called interface—saturation

(IS) contours rather than interface composition contours; as will be seen later, it is necessary

to make this distinction in order to avoid confusion.
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The effects of capillarity in multicomponent growth can be observed in IS contours, which
in the present context illustrate the locus of points where growth under local equilibrium is
possible. In the absence of capillarity, growth with local equilibrium is always possible, as
illustrated in Fig. 5.3. Fig. 5.6a shows for a ternary system, the permitted values for €,
and €, as p, is varied for r/r, = 6. Consistent with the binary case (Fig. 5.5), there is a
minimum value of €, for the fast diffuser; larger values of Q; are required when D,/D;, is
increased, because the slow diffuser requires more driving force to keep pace with the fast
diffuser. As capillarity is increased, less energy is available for diffusional growth, demanding
larger supersaturations as shown in Fig. 5.6b for r/r, = 2; this effect is reduced for larger

values of r/r, (Fig. 5.6¢c).
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Fig. 5.6: IS contours for needle growth in a ternary system for fr/rc = (a) 6,
(b) 2, (c) 10. Note that the scale in Fig. 5.6b is different from 5.6a and 5.6c.
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To find a solution to equations [5.18-19], consider an alloy of composition ¢;. In a mul-
ticomponent system, the critical radius can be calculated from equation [5.8], which requires

that
B B B
“ Vi __ 9 Ve _ .- _ ¢ Ve (5.21)
et =’ - e’ ec — el et — el

[
for i = 1,2, ..,C components. Once a tie-line that satisfies equation [5.21] is found, the value
of r, can be obtained.

Consider a ternary system, choosing the appropriate equilibrium tie-line that satisfies
of cffa

equation [5.21], the values of ¢}, cg‘ﬁ, cga can be obtained, and thus ©, and €2, and r,

calculated. Provided that the value of the diffusion coefficients of the two solutes is known,
D, /D, can be calculated. Then the value of r/r, can be varied until an IS contour intersects
the point Q,, €,. This procedure is shown in Fig. 5.7 for D,/D,; = 103, where the point

Q, = 0.1, Q, = 0.05 is intersected only by the IS contour produced with r/r, = 10.

r/r =12
C
0.00 - ! ! !
11 —
10 X—
-9
0.25 - j -
-8
o 0507 -
0.75 - -
—

1.00 0.75 0.50 0.25 0.00
Ql
Fig. 5.7: IS contours for D,/D; = 10% as a function of r/r,.

For any set of supersaturations €2, €2,, there is only one possible IS contour that can be
intersected (Fig. 5.7), implying that the value of r/r_ is unique. Furthermore, being that each
point of such IS contour is associated to a unique value of p, and p, = g—jp% these are uniquely
defined as well. r, can be obtained from the equilibrium compositions and then the velocity is

determined through g, = 2p, D, /r = 2p, D, /7.
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5.4.3 The effect of interface kinetics

Assuming no interaction between components, the velocity of a flat interface can be ex-
pressed as g, = p,;(¢; — c?ﬁ) for i =1,2,...,C components, where i, is the interface kinetics
coefficient of component 7. The relative magnitudes of interface kinetics and diffusion effect

are given by

_ a/3
w Boi(E =)
* — Doidn 7 J 5.22
4 2D, /r, ( )

Thus, equation [5.19] can be modified to include interface kinetics as
* e Di Te

Q=g"p} 1+ QTEQiRl{pi} + TQiRQ{pi} (5.23)

K3
For small values of r/r_, the solution of equation [5.23] for a single diffusing component
is shown in Fig. 5.8 for the indicated values of ¢*. Tt is to be noted that as the interface
kinetics effect is increased, the permitted values of p are reduced for a given supersaturation
and r/r,. This is because at greater velocities more energy is dissipated in atom transfer across

the interface, reducing the lengthening rate.

To assess the effect of multicomponent interface kinetics it is first recognised that
Dy =q;Dy = ... = qc D¢ (5.24)

which has to be simultaneously solved with equations [5.18] and [5.23] to satisfy mass balance
at the interface.

The supersaturations that simultaneously satisfy equations [5.18, 5.23, 5.24] can be ex-
pressed as IS contours for C' = 2. Fig. 5.9 provides an example of such contours for ¢; = 0.02,
r/r,=8, this shows that the addition of interface kinetics effect limits the value of ©; and €,
when these approach 1 due to all the energy will be depleted by this effect.

The overall effect of interface kinetics is to reduce the particle lengthening velocity, and
limit this to a maximum value as €2, — 1. The procedure to obtain the lengthening rate and
tip radius for a given composition is identical to the one explained previously, but using the

appropriate values of ¢ to produce the IS contours.
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Fig. 5.9: Needle IS contours for ¢* = 0.02 and r/r, =8
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5.5 Multicomponent plate growth

In analogy to needle growth, mass balance of a plate—shaped particle growing in a mul-
ticomponent dilute Henrian solution requires the satisfaction of equation [2.37] for each com-
ponent, if local equilibrium is assumed at the interface. This is expressed for i = 1,2, ...,C

components as:

g r,
Q; = /7p;exp{p;terfc{\/p;} |1+ g_sz‘S1 {pi} + 792‘52{1)2‘} (5.25)
The relative effects of capillarity and interface kinetics are best observed when the param-
eter 5
pi(@ —ci”)
= 5.26
qz Di/rc ( )

is introduced in equation [5.25], this measures the relative magnitudes of interface kinetics and
diffusion effects of each component for plate growth with an interface kinetics coefficient given

by p;. Using g;, equation [5.25] is expressed as

r.p, r
Q;=g%{p}|1+ fjﬂi51{Pi} + fQiS2{pi} (5.27)
k3
where g°{p;} = \/7p; exp{p; }erfc{ /p;}

Assuming no interaction between components, the critical velocity at which the concen-
tration difference in the matrix vanishes ¢, = p, (¢, — c?ﬁ) is equal for any component 7, this
requires

"Dy =Dy =...=qc D¢ (5.28)
The analysis performed for needles can now be reproduced for plates.

5.5.1 Isoconcentrate boundary

When capillarity and interface kinetic effects are neglected, equation [5.25] is reduced to

Q; = \/7p; exp{p, terfe{\/p;} (5.29)

The solution for ¢ = 2 solutes using Coates’ IC contours, is shown in Fig. 5.10 for a variety of
values of D,/D,. It is observed that the behaviour of plates with an isoconcentrate boundary

is similar to spheres, and qualitatively identical to that of needles.

5.5.2 The effect of capillarity and interface kinetics

When capillarity and interface kinetic effects are introduced, C' equations given by [5.27]
have to be solved simultaneously. Additionally, the use of the maximum velocity hypothesis

will require to satisfy

e | Piar 1 ! go{pi} o
<281 p;} — =S {p;} + Sy{p | + = +9°{p;} - 1 5.30
r g, 1{p} »; 2{p} 2{27} 2, 9°1p:} ( )

K3

2T

0= (QO{PZ‘})

61



Fig. 5.10: IC contours for plate particles.

which casts a system of 2C’" equations in which the two variables g, and r are over—determined.
In analogy to the analysis for needles, the problem is thus inverted to seek the solutions
provided by equation [5.27] in a single solute system, and then extend this to multicomponent
systems. Fig. 5.11 shows the values of p as a function of supersaturation for several values of
r/r,; when interface kinetics effects are neglected (¢ = oo in Fig. 5.11a), and increasing this
to ¢ =10, 1, 0.1 in Figs. 5.11b,c,d, respectively. The behaviour of the solution resembles that
of needles; this is confirmed by the IS contours shown in Figs. 5.12a,b, which are plotted for
q =10, 1 with r/r, = 100.

It is to be noted that the specific values of r and g,, will differ between needles and plates for
given values of supersaturation; in fact, for a given supersaturation, the expected values of r/r,
are lower for needle than for plate—shaped particles. This is generic effect is demonstrated in
Fig. 5.13 where p is plotted against € in a binary system where interface kinetic and capillarity
effects are neglected, the values of p for needles are lower for needles than for plates, implying

that for a given lengthening velocity their radius will be smaller.
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Fig. 5.11: Plate Péclet number as a function of supersaturation for ¢ = (a)
00, (b) 10, (¢) 1, (d) 0.1.
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Fig. 5.12: Plate IS contours for r/r, = 100 and ¢ = (a) 10, (b) 1.
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Fig. 5.13: [Isoconcentrate boundary values of p against {2 for plate and

needle-shaped particles.
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5.6 Application of the theory to Fe-C-Mo

To illustrate the use of the theory, it has been applied to calculate the lengthening rate

of Mo, C needle—shaped precipitates growing in a ferrite matrix in a Fe-0.11C-1.95Mo alloy.

Measurements on the lengthening rates and needle tip radius have been performed by Hall et

al. [1972] for a number of temperatures, and their data are shown in Table 5.1.

T [°C]
600
650
700
750

25
30
35
40

g, [ms™']
1.0 x10~12
1.0 x10~11
1.3 x10~10
2.2 x10710

Table 5.1: Mo,C tip radius and average Mo,C lengthening rates in Fe-
0.11C-1.95Mo [Hall et al., 1972]

The diffusion coefficients of C and Mo are calculated from

D=D, exp{

_&}
R, T

(5.31)

For molybdenum, D =1.1x10"* m? s=! and @=240x10* J mol~! [Friedberg et al., 1969]. For

carbon, D =2.2x107* m? s=! and Q=122x10% J mol~! [Wilkinson, 2000].

The critical radius was obtained from equation [2.18] with ¢ = 0.2471 J m~? [Fujita

and Bhadeshia, 1999], 'vg and '016[0 were approximated as 1.25x107%? m® atom~!; and ¢{

B

and cfa were obtained from a tie-line satisfying equation [5.21], which was provided by a

thermodynamical database and phase diagram software MTDATA [1995].

The values of D,/ D, were found to be ~ 107 (Table 5.2), and the IS contours corresponding

to the values of r/r, that intersect supersaturations €, , Q. were chosen. The tip radii and

lengthening velocities associated to these calculations are shown in Table 5.2.

T[°C]  D,/D,
600 2.3 x107
650 9.5 x10°
700 4.3 x10°
750 2.1 x10°

QM
0.0165

0

0.0159
0.0150
0.0132

Qc
0.0149
0.0145
0.0139
0.0130

Paro X 1073 1 /r,

2.25
2.11
1.92
1.60

21.6
20.8
20.1
19.6

11
18
30
49

g, [ms™]
2.0 x10712
6.8 x10~12
1.8 x10~11
4.0 x10~1

Table 5.2: Results of the application of the theory to the lengthening of

Mo, C
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On comparison of Tables 5.1 and 5.2, it is shown that the predicted and measured tip
radius and lengthening velocity are quite close. This model, however, neglects the effects of
cementite, which is present in the initial states of precipitation, and dissolves, providing solute

for Mo, C growth. This will be added in a model to predict the kinetics in a next chapter.

5.7 Summary

The theory to treat growth of precipitates in an ideal multicomponent Henrian solution
is presented. It is assumed that the precipitating particles approach spheres, paraboloids of
revolution (needles) or parabolic cylinders (plates). It has been observed that the effect of
capillarity in spheres is to reduce the thickening rate, such that a particle that would grow
under a regime where there is no long-range partitioning of the slow diffuser, can be shifted into
a regime where such partitioning is necessary. The main result for needles and plates was to
demonstrate that the maximum velocity hypothesis cannot be sustained in the multicomponent
scenario, and that the supersaturations are bounded for lower and upper values when capillarity
and interface kinetic effects are prominent, respectively.

A methodology to calculate the lengthening rate for the referred geometries was presented,
and it proved good accuracy for Mo, C lengthening in a secondary hardening steel. Both the

theory, and the solution method prove that the maximum velocity hypothesis is not required.
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CHAPTER 6

Capillarity and Growth in non—ideal
multicomponent systems

6.1 Introduction

Precipitation reactions commonly occur in non—ideal solutions where interactions between
components occur. It would therefore be useful to develop theory to account for these. In this
chapter the Gibbs—Thomson effect is generalised for non—ideal solutions where a change in
the precipitate composition and chemical potential is present, and theory for the growth of

spheres, plates and needles is presented in this framework.

6.2 Gibbs—Thomson effect in non—ideal systems

During precipitate growth, particles can be characterised by a curvature which alters the
state of equilibrium of the system, depleting the available energy for growth. This is the
so—called Gibbs-Thomson effect [Christian, 1975], which induces concentration shifts in the
matrix as the energy of the precipitate is increased by o(dO/dn) as shown in Fig. 2.4. This

situation can be expressed mathematically in a molar basis as:
2
9*Ge (co‘ﬁ ~ Caﬁ) _ 20V,
oct 7 r

(P — P (6.1)

where G¢ is the a phase molar volume.

Equation [6.1] has recently been generalised for a multicomponent system by Morral and
Purdy [1994]; however this leads to a violation of the condition of chemical equilibrium at the
interface, as demonstrated by Trivedi [1975], and Kulkarni and DeHoff [1997], and discussed

next. Expressing the chemical potential of o phase as

0G*
o _ (o 1— af
pe =G0+ (1= )
then
2?Ge 1 ou”
= 2
ac? 1—c¢20 dc (62)
which can be substituted in equation [6.1] to give
Cﬁoz _ Cozﬁ 8’uoz
—_— de®® =26V, _dH .
T oor g0 e oV (6.3)

7 Note that the term (u® — G®)/(1— ¢*P)? vanishes by choosing a reference state such that
pe =Ge.
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where equation [6.1] is now expressed in terms of increments of composition de®? = ¢2# — ¢*#
and H is the curvature of the particle. Note that for a sphere H = 1/r, whereas for a particle
with variable curvature at the interface, e.g. a parabola H = 1/R, where R is the mean
parabolic interface radius. The following derivations are for spheres, but their application to
particles of variable curvature is straightforward. The case of needles will be discussed in more
detail in Chapter 8.

Equation [6.3] can be expressed as

P — b

W(NQ{H} - p*{H =0}) =20V, H (6.4)

for a curvature increment from H = 0 to H = 1/r. However, from thermodynamic theory
[DeHoff, 1993]

ou® dp” 0
L deoP = Z—dcP* + 20V H .
5o e e + 201 (6.5)

where p? is the chemical potential of 3 phase and dc?® = ¢ — cP® where ¢#“ is the capillarity
corrected composition of 3 in equilibrium with « and 7/3 is the partial molar volume of the 3

phase. By analogy to equation [6.4], equation [6.5] can be expressed as:
o [o} _18
P LY — g (T = 0} = (P} — {1 = 0}) + 207" (6.6)

for sufficiently small increments of composition, i.e. |dc®?| < |c?® — ¢*#| and |dc??| < [P —
c®P| which is the same assumption implicit in the form of the Gibbs—Thomson equation that
appears in literature [Kulkarni and DeHoff, 1997]; the increase in chemical potential can be
approximated as:

ap

1-c
S, P v
aﬁQ(ﬂ W H

QUvﬁH: 3
cPe —¢

which can be substituted in equation [6.6] to give

cPo — cof

Bo _ paf
g W{HY =t {H = 0}) = —— (W {H} = pP{H = 0}) + 20V, H (6.7

Thus, if equation (6.4) is substituted in equation [6.7] we see that
WP = {1 = 0) (6.5)
But equilibrium demands that
po{H =0} = p’{H = 0} (6.9)

Combining equation [6.8] and [6.9] we obtain u’{H} = u®{H = 0}, which can be substituted
in equation [6.4] to give u®{H} # u?{H}, which violates the equilibrium condition when a
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curvature is present. The origin of such a contradiction is that the term du”/dc in equation
[6.5] is lacking in equation [6.3]. Note that the Gibbs-Thomson equation is correct in the
context it was derived: liquid—gas equilibria in unary and binary systems, but it has been
assumed to be valid for condensed phase equilibria in unary, binary and multicomponent
systems. An extension of the Gibbs—Thomson equation has been given by Morral and Purdy
for multicomponent systems [1994], which implicitly contains the same approximation.

Kulkarni and DeHoff [1997] demonstrated that the same violation to the equilibrium con-
dition (u*{H} # u?{HY}) is present in a unary solid-liquid system when the Gibbs—Thomson
equation is used. They concluded that this is due to the pressure change of the a phase is
neglected, and demonstrated this has a significant effect in the chemical potential shifts in
solid—liquid interfaces.

Chaix, Eustathopoulos and Allibert [1986] have studied the effect of curvature on the
Gibbs energy for a binary two phase system, in terms of the interactions between the system
components where the term du”/dc is not neglected in equation [6.5], but their results are
limited to the first order development of the chemical potentials of each component. Chaix
and Allibert [1986] have extended the previous work to ternary systems but still using the first
order development of the chemical potentials, assuming a main constituent and a negligible
solubility of another one, i.e. pseudo—binary behaviour.

Kuehmann and Voorhees [1996] have presented an elegant method to predict the capillarity
shifts in a ternary two phase system, but it is limited to the first order terms of the chemical
potentials, and is applied just to spherical particles.

It is thus required to develop theory to obtain the chemical potential shifts in multicompo-
nent and multiphase systems, taking into account du”/dc in the chemical potential equilibrium
equations. DeHoff has followed the same method to calculate the composition shifts due to
capillarity in a binary system [DeHoff, 1993], but the final expressions he obtains are different

to the ones presented in the next section.

6.3 Gibbs—Thomson effect in binary systems

In this section, the Gibbs-Thomson effect will be extended to include the term (9u”/d¢)dc’
in equation [6.6], for binary systems. In deriving expressions for chemical potential and com-
position shifts, it is assumed that the effects of elastic fields on the morphological stability of
precipitates growing from a solid solution can be neglected [Leo and Serka, 1989, Cahn and

Larché, 1982], as they appear to be small when the particles are small [Calderén et al., 1994,
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Nishimori and Onuki, 1991], which is the case when capillarity effects are prominent; thus it
is assumed that the particles are shape—preserving. Furthermore, no variation of the interfa-
cial energy per unit area with composition is assumed. The recent work from Miyazaki and
co—workers has proved that this can actually be true by inducing a macroscopic concentration
gradient in several binary alloys [Miyazaki et al., 1996, Miyazaki, 1999]. Bearing the above
assumptions in mind, the equilibrium conditions for a binary system where a curvature change

dH is present require [DeHoff, 1993]:

dT? = dT* (6.10)
dP’ = dP° + owdH (6.11)
duf = dyg (6.12)

for components i = 1,2 where T?, P? and T®, P°® are the temperatures and pressures of /3
and « phases, respectively, and ,u;g, pi' are the chemical potentials of component 7 in 3 and a
phases, respectively, w is the order of curvature of the particle, e.g. w = 2, 1, 0 for a sphere,
cylinder and a flat surface. A differential change in chemical potential of component ¢ in « can
be expressed as

dps = —S7dT + V0 dP® + pSdes” (6.13)

where the component 2 is chosen as the independent composition variable. ?? and V? are the

component ¢ partial molar entropy and volume, respectively, and

8uq)
e = ( d (6.14)
! 80]' T,P,c;

is the change in chemical potential of component i with ¢; composition. Analogous expressions

to equation [6.13] can be obtained for ,uf, thus, equation [6.12] can be expressed as
—AS,dT + AV, dP* — wo Ve dH + pSydeS? — uf,del® = 0 (6.15)

—AS,dT + AV,dP* — woVydH + pydes® — plyde* =0 (6.16)

where AV, =V — \_/f and AS; = 5] — Ef

To assess the effect of capillarity, temperature and pressure are fixed. Note that assuming
dP® = 0 seems to be reasonable in the context of solid—solid transformations where, as the
particle nucleates (when capillarity effects are prominent) the strain fields are small. Using the

Gibbs-Duhem equation ¢;dp, + ¢,dpy, = 0, p1y, can be expressed as

G
Moo = ——Hy2
¢y
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Thus, equations [6.15, 6.16] can be expressed as

L [des? dey® —8
N12( d;{ ) - Hf2( d;{ ) = waV, (6.17)
af af Ba Bo
cf” [ dey ) s (d02 ) —3
1 =) 4+ = —= ) =woV 6.18
C;ﬁﬂm( JH Cgaﬂm JH 2 ( )
The solution to the previous system is
d af - - af
;;1 = wo (V] + V7)) _ C; — (6.19)
' 5P (C1 Cy =€ G )
d Bo - . Bo
2 = wo (VY + 57V © (6.20)

aH iy (ef°es” — 27ef)
Assuming that cfﬁ, cga — 1 and cfa, c?ﬁ — 0, and that the solution obeys Henry’s law

in spherical particles, the variation of concentration with curvature (equations [6.19, 6.20]) can

be expressed as:

af af ’LUU"_/S
CT? = C2 exp RU—TH (621)

770

o o woV
o= b exp{— RUTI H} (6.22)

From which the exponential in equation [6.21] can be expanded in power series to give
0 af
aB _ ap woV  1—c,

cry = 5 (1 + BT c?ﬁH (6.23)

which is equivalent to the expression for concentration shifts in a Henrian solution given by
equation [2.11], when w = 2.

DeHoff [1993] used the same method described in this section, and obtained equations
[6.17—6.18], but when solved them simultaneously, the equations he obtains are different to
[6.19-6.20] for unknown reasons to the author. The validity of equations [6.19-6.20] can be
corroborated by direct substitution in [6.17-6.18].

6.4 Multicomponent and multiphase systems

6.4.1 Two phase systems
For a two phase system, where « is the matrix phase and (§ the precipitate, and ¢ =
1,2, ...,C components, the equilibrium conditions are given by equations [6.10-6.12]. Equation
[6.12] can be expressed as
c-1 c—1
~AS AT + AV, dP* —woVidH + Y ufde” — 3 pfdef® = 0 (6.24)
k=1 k=1
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Keeping temperature and pressure constant, equation [6.24] can be expressed as:

Z Czjl o dei” = woV, (6.25)
ILLZk dH Mk dH - i .

which can be solved for dckﬁ/dH and de}”/dH for k =1,2,...,C'— 1 whose numerical integra-
tion provides the solute concentration shifts. Equation [6.25] is reduced to the binary system
of equations [6.17-6.18] for C' = 2.

To illustrate the solution of the system given by equation [6.25], consider a ternary steel
the type Fe-C-X where a 3 phase precipitates in an a matrix phase. Being that temperature
and pressure are fixed, there are four variables, say CC , c%ﬁ, C)’S(CY and C;Y(ﬁ, and three equations
given by [6.25] for ¢ = Fe, C, X, thus, consistent with Gibbs phase rule there is one degree

of

of freedom. Say cyx"” is chosen to vary, then for an increment dHP there is just one value

chﬁ that satisfies equations given by [6.25], and dcga, dc and dc)ﬁga are given by the phase
diagram. This process can be followed for incremental values of dH” until C%? = ¢y, where
the critical radius for nucleation is determined. The values of u?}f and ufka may be obtained

from a thermodynamical database such as MTDATA [1995].

6.4.2 Multiphase systems
In a system of ¢ = 1,2,...,C components and j = [,[],...,P precipitate phases (j # «a,

which is the matrix phase), the equilibrium conditions are given by:
dT" =dT" = ... =dT* = ... = dT" (6.26)

dluZI = dNZII = ... = dlu?z = ...= d[LP (627)

The mechanical equilibrium condition is extracted from the balance of forces per unit area

along the interface of each particle:
Pl =P+ wlo’H = dP’=dP® +wicidH’ (6.28)

for j = I,11,...,P, j # «, where w/ is the order of curvature of the j precipitate, o7 is its
matrix—j particle interfacial energy per unit area, and dH7 its curvature.

Setting dT7 = 0 and dP® = 0, the chemical potential shifts are given by

i = Y e’ (6.20

dpd = 3 il del® + wioVidH (6.30)
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forj=1,11,...,P,j# «a. The term ch‘j is the shift in the composition of « in equilibrium with
0B, which will produce an equal shift in chemical potential ,u?kdczj for a system in equilibrium
(equation [6.27]) regardless of the selection of j. Expressions [6.29] and [6.30] can be substituted
in [6.27] to give

— C—
E plodelo + 'wIUI‘_/iIdHI =.= E pbodel ™ +w O'PV dHY = E ,uzkdcz]
or c
-1 Ilo II
! _ rrdeg 1  I1y; mdH _
Z““ﬂdHerwUV el gt TV g = T
c-1 c-1 ;
dcbe p—P dHY de’?
P k e k
E b otV = E ; 31
et szdH[ +w tdHI pt Nzde[ (63 )

fori = 1,2,...,C. The derivatives dH'! /dH', dH' /dH',....dHY /dH" and can be obtained
from the particle growth equations as will be shown in the following sections. When these
are set, there are C' — P degrees of freedom, the solution of [6.31] comes from the iteration
of those composition differentials until the equations are met for increments of curvature dH’
until the interface composition of each particle equals the average composition of the alloy at
the critical radius. The significance of the derivatives dH7/dH' (j = I1,I11,...,P) is that a
change in curvature in any of the present phases will induce changes in the remaining for the
system to maintain equilibrium.

From equations [6.31], any composition shift caused by a curvature change from H? = 0

to H/ = 1/r can be approximated as
A — el = floHI (6.32)
- = g (6.33)
for averaged values of dc/®/dH’ and dczj/de. The case of a Henrian solution is when

0j _ aﬁwa‘_/ﬁ 1—02’6

c
S A

as given by equation [6.23].

6.5 Precipitate growth with capillarity effects

The methods described in the previous sections can be employed to obtain the local equi-

librium concentrations for particle growth. This task will be done in the present section. The
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procedure to obtain particle lengthening rate expressions in a diffusion—controlled growth pro-
cess can be described in steps as follows: 1. The diffusion equation for each solute is written in
an appropriate coordinate system. 2. Each equation is solved under boundary conditions that
account for capillarity. 3. The solutions are substituted in a mass balance equation for each so-
lute written in the appropriate coordinate system, from which the lengthening rate expression
is extracted. This procedure is followed next for three different particle morphologies, remov-
ing the usual dilute solution assumption, and developing for multicomponent systems. No
variation of diffusion coefficient with concentration is assumed, and interdiffusion coefficients

are neglected.

6.5.1 Spherical particles

In a multicomponent system, the diffusion equation in a spherical coordinate system can

be written as (equation [2.39]):

Jc;

2

ot R?OR

B &i , de;
(1ot o

for i = 1,2,...,C components. The solution is of the type

where r is the spherical particle radius and a5; growth parameter related to component 7 =

1,2,...,C. The boundary conditions to solve equation [6.34] are:
A{t=0,R} =7, and eft,r} =c2f (6.36)

where ¢; is the average concentration of solute 7 = 1,2,...,C in the alloy, and c?f is the
concentration of solute 7 in the matrix (@) in equilibrium with a § precipitate for a curved

interface. In analogy to equation [3.7] an approximate solution that satisfies equation [6.34] is

cf{t,Ry=7¢,+ [} —¢/] % (6.37)

where

Plag;} = o% exp{—aj’i } - gerfc{ O;?’i } (6.38)

and c?f accounts for the capillarity corrected concentration shift of a non—Henrian solution.

Mass balance at the interface is mathematically expressed as

o o de;
!][Cfi - Cmﬁ] = Di@

(6.39)

75



where g = 0r /0t is the spherical particle growth rate. When equation [6.37] is substituted in

equation [6.39] we obtain

1 1
Qg = 50422‘ eXP{ZOZ%i}Gb{%i} (6.40)
where
Q. - C; — C?Z‘ﬁ
51 C/?a . Ca'B

Ba

The concentrations ¢,;;” and cff are given by the solution to the system of equations [6.31],
once obtained, equations [6.40] can be solved simultaneously for i = 1,2, ..., C providing values
of a; consistent with equation [5.12], from which ¢ = %ozSi\/W is extracted for a given
curvature H = 1/r.

As discussed in Chapter 3, the analytical solution presented above is theoretically incon-
sistent, although its accuracy may be tolerated for kinetic calculations in many cases. If larger
accuracy is required, the finite element solution can be invoked when extended for multicom-
ponent systems as shown next.

For i components, equation [3.13] can be written in the form of finite differences as

Jj+1 J J J
in o Ci,n _ NO —n % Ci,n—}-l - Ci,n—l % g]'+1
At L—r 2
cl — 2l + ¢l D. e —
D. % i,n+1 i,n t,n—1 4 % i,n+1 t,n—1 6.41
D C=miNe 3 @E < (=N, (6.41)

Ny
where 7 = 1,2,...,C and n = 0,1,2, ..., N, are the nodes that divide the matrix phase in N

elements each of length AR (Fig. 3.6), j is a time interval, c? ,, is the 7 solute concentration in

node n at the time interval j, At is the increment in time, L is the zero mass transfer boundary

at the matrix, i.e. where ¢! y = ¢! Not1 and ¢7*1 the interface velocity at the time interval

j+1

For i components, the mass transfer equation [3.15] is similarly expressed as

ritt -l D « _C?,z + 46?,1 - 36?,0
At Cfia_c'?o Q(L—T)/ZVO

2,

(6.42)

where i = 1,2,...,C, v/ is the particle radius at time interval j and C?o = cff.
The numerical solution for spherical precipitates comes from the simultaneous solution of

equations [6.41, 6.42, 5.12] for successive time intervals with

AR?
At <0.2
<0.25—

(6.43)

k3

Bo

for non—oscillatory solutions [Tanzilli and Heckel, 1968]. The equilibrium concentrations c,;

and c?f are obtained from the method described previously.
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6.5.2 Plate-type particles

Assuming that the particles approach a parabolic cylinder, the diffusion equation is ex-
pressed in terms of the parabolic coordinates 1 and £, and the Péclet number p, = gpr/QDi

where g, is the interface velocity, and r the plate tip radius [Trivedi, 1970b]:

0%c, O%c, Jdc, oc.
! L4+ 2p. L — 1 =0 6.44
e T T pz[éag "an] (6.44)
From equation [6.33], the concentration at the interface can be expressed as:
=+ 120 (4t (6.45)

a
where term a accounts for the curvature change along the interface. The concentration at the
tip of the plate, where the curvature is maximum, is obtained from the solution of the system
of equations given by [6.31] with w = 1; the variation of concentration along the interface is
approximated by the product of constant fia’ﬁ (equation [6.33]) and the interface curvature
(1/r)[1+ n*]73/2. By analogy to equation [2.35], the solution to equation [6.44] is given by

- I, erfe{ /p:¢}
¢ — ¢ = mz::O A2mm1{2m{\/p_m} (6.46)

where

erfe{/p;€}
erfc{/p;}

is the isoconcentrate boundary solution given by Ivanstov [1947]. The value of the coefficient

~

Ci:@‘l‘(c?ﬁ_@)

A,,. is obtained from the boundary condition along the interface £ = 1, giving

> Ay oy {y/Bin} = (F77 /1)1 4+ 7172/

Following Trivedi’s analysis, the properties of Hermite polynomials are invoked [Trivedi,

1970b], so the coefficient is expressed as:

2720 p3 (—1)m
2m = f; pzﬂ' ((QTTS)!FD{'m“l'1/2}FD{m+3/2}\I}{m+3/2’27pi}

A

The mass balance equation is expressed in analogy to the binary case as
ol dc
2n. C/f?g — C{Nﬁ fZ— = | — 6.47
et = (e + L) (85)€ié (6.47)
in which equation [6.46] can be substituted to give

af ‘ —p. af
2p; [cfia — (C?ﬁ + sz)] =2(c; - C?ﬁ)\/gszi\/i_ﬁ + fzr My{p;} (6.48)
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where
2n+1er {\/_}
I, erfe{\/p,}

has been presented in Fig. 4.2. Equation [6.48] can be re-arranged to obtain

My(py = 2 ZFD{ + 3} Win+ £2,p}

ozﬁ oz,B

Q,; = /7p; exp{p; terfc{ /p;} [1 + - caﬁ ———=5{p;} (6.49)

)
S

b

where
o . — G — 2P
pi @ af
TZa Ci
pz
Equation [6.49] shows that when capillarity vanishes (¢ — ¢ — 0), this is reduced
to Ivanstov solution as b — 0. Furthermore, when the difference cfff — c?’g is expressed

using the Henrian solution approximation (equation [5.7]), Trivedi’s equations extended for

the multicomponent scenario [5.19] are recovered.

6.5.3 Needle-like particles

It is assumed that needle—like particles approach a paraboloid of revolution, where the
tip radius is defined by r, in which case the diffusion equation is expressed in terms of the

parabolic coordinates v, § as

d*c; 1 de; ¢ 1 de;
3+ (5 +omn) 3+ st (5 2m0) G =0 (0:30)

The interface concentration provides the boundary condition

2+ §2
(1+52)3/2

d

c; ="+ 27 (1r) (6.51)

where d term accounts for the curvature change along the interface, and the concentration shift
f27 is obtained from (6.31) with w = 2. The general solution of the diffusion equation [6.50]

is

- —p.y2 10 1,1, p~?
Ci_C;:ZA eXp{ pﬂ/} {TL—}— ) 7p27} 9{])‘52}

6.52
exp{—p,}¥{n +1,1,p,;} ( )
where
_ _Ei(pir?)
af 1\
C; =G + (Ci z)
E, (pz)



where ¢} is the isoconcentrate boundary solution provided by Ivanstov [1947] and Horvay and
Cahn [1961]. The coefficient A, is obtained when the boundary concentration (equation [6.51])

is equated with the concentration field expression (equation [6.52]) for v = 1, giving

A f“ﬁ [ p(n+3)
n = exp{p;}|2p; 2ThLlerfc{\/p_Z}—I—\/p_lF it )I nerfe/p; (6.53)

The interface mass flux balance can now be obtained

Ba ws L TN 2@ -7 7o
2pi|: . (Ci + T)] ~expi{p;} Eiip;} + " No{p;} (6.54)

where

Nyip;} = 2p)/ exp{pz}z W[z\/@% rerfe{y/p;} + FDJJE Li I, erfe{\/p,}

is shown in Fig. 4.2.

Equation [6.54] can be re-arranged as:

ozﬁ . ozﬁ
Qi =pi eXP{Pi}El{Pi}[ + 7%3]% {p:} (6.55)
Cri — 6
where
1
Ry{p,} = —N,{p.} - 1
2{pz} 2p2 2{p2}
By analogy to equation [6.49], equation [6.55] will approach to the isoconcentrate solution
when the term e vanishes, and to Trivedi’s expressions for Henrian solutions when caﬁ c?ﬁ

is calculated through equation [5.7].

6.6 Summary

The thermodynamic equilibrium relationships for non—-ideal multicomponent and multi-
phase systems has been presented when capillarity is introduced. A method to predict the
equilibrium concentrations as a function of curvature is described. This has been applied to
obtain relationships to determine the growth rate of particles approaching spheres, paraboloids
of revolution and parabolic cylinders, which have been shown to be consistent with the theory

for particle growth which obeys Henry’s law.
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CHAPTER 7

Precipitate coarsening in multicomponent systems

7.1 Introduction

The latest theory of precipitate coarsening is capable to deal with multicomponent effects
in non—ideal solutions [Umanstev and Olson, 1993], and off-diagonal terms of the diffusivity,
which have been recently included by Morral and Purdy [1994]. However, those theories use
a form of the Gibbs—Thomson equation that neglects changes in chemical potential of the
precipitate phase (section 6.2) to obtain the composition shifts due to capillarity.

This chapter presents an extension of the Ostwald ripening theory introduced in section
2.6 that incorporates the generalised form of the Gibbs—Thomson equation given in previous

chapter.

7.2 Gibbs—Thomson effect in coarsening

From equation [6.25], it is possible to express the Gibbs—Thomson effect as:

c c
Z,u?kdczﬁ - Zufkdcka = ande (7.1)

When coarsening of particles occur, their curvature is expected to be large, thus it becomes
possible to express equation [7.1] in terms of composition increments and a curvature H = 1/r:

c c woV’
o ugAG = pi A = —- (7.2)

r

where Ac¢ = 2P{r} — ¢ and Acl = 2{r} — l°.
From the definition of partial molar properties [DeHoff, 1993], it is possible to express the

molar volume of g phase as
c
V, =S v (7.3)
i=1

Thus, when the sum of ¢ equations given by [7.2] is multiplied by cfa, it can be expressed in
terms of the molar volume of the § phase:
c rC c
Z[ Ay — ZC?“M&ACQ] _ 27V (7.4)
k=1 k=1

r
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In the notation used next, a matrix A can be expressed as (A], [A] or [A), which refer to a row,

square or column matrix. Thus, the Gibbs-Thomson effect (equation [7.4]) can be written as:

(P p[Ae) = (P [Ac?) + 2T 7.5
where
o [ O] o (On)
] = ( 80]' )T,P,ck7 = (acj )T,P,ck (7.6)

Equation [7.4] and the forthcoming equations can be reduced to C'—1 independent variables
by setting

Y e=1 (7.7)

=1

7.3 Coarsening rate

The method to obtain the equations that describe the kinetics of coarsening can be sum-
marised as follows [Umanstev and Olson, 1993]: 1. The mass balance condition at the interface
is set using the appropriate concentrations as these are modified by capillarity. 2. Conservation
of each solute component is set by balancing this with the initial supersaturation of the alloy,
and accounting for particle growth and dissolution. 3. The continuity equation is applied to
the particle size distribution. 4. The expressions provided by former steps are simultaneously
solved. This method is applied next for coarsening of spherical particles (w = 2); this rests
no generality to the analysis presented here as the actual shape of the particles may be taken
into account by adjusting certain numerical constants in the relevant formulae [Lifshitz and

Slyozov, 1961].

Interface mass conservation

Following Morral and Purdy [1994], the mass conservation condition at the interface of a

particle of radius r yields

[Ac™) x % + L][TMQ)

=0 (7.8)
where [Ac®P) = [P{r} — c®P{r}), [AT®) = [c¢*?{r} — €) where [¢) is the matrix far field

concentration and [D] = D, is the square diffusivity matrix. Equation [7.8] can be obtained

k3
from the mass conservation condition applied at the interface of a growing sphere (equation
[5.9]) when off—diagonal terms of the diffusivity matrix are incorporated and the concentration

shifts are taken as increments. Equation [7.8] can be multiplied by (¢®][u][D]~! form which
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the term (cP][u®][AT®) can be obtained from the Gibbs—Thomson equation [7.5] when this is

expressed as

(P uNAR) + (AT = (A + 2T (7.9
where [AZ°P) = [¢ — ¢®P), this can be substituted in equation [7.8] to give
R TD Ae G = (T ae) - (A - ) (a0
it is seen that the critical radius at which a particle dissolves is given by
r, = 20V, (7.11)

T (ePNueN[AT) — (ePe)[nP)[AcP)

which includes the term (c?°][uP][Ac?) in the denominator which is lacking in Umanstev and
Olson’s [1993] expression for critical radius, this accounts for the 8 phase energy contribution
to keep the particle in equilibrium with the matrix as a curvature is present.

To solve equation [7.10] it is recognised that A{t} = (c*][u*][A2®P) is a function of time
[Umanstev and Olson, 1993] and (c?°][u?][Ac?) depends on r only; the functional dependence

of the last term can be approximated as

r

(Tl l[A) = (P [nf][AC]) (7.12)

r
r
where 7, is an average reference particle radius and [Acf) the difference in concentration
between a 3 particle of this radius and that of an infinite radius or [AcP) = [¢Po{F } — ¢f?).

The validity of equation [7.12] lies on approximating the change in composition of § phase

during the coarsening process as

Ty

[Ac?) = [ fr) — ) = [P {F,} - ¢*) (7.13)

T
which represents a curve in a C' dimensional space where the initial point is given by

13

[?{r}) = [e”2{F,} = %)L 4 [7?)

r
and the final point is the composition of 3 in equilibrium with a for a flat interface [¢?*{r =
>}) = [¢?®). The approximation used here is not general as the variation of ¢’® with r is
strictly given by the phase diagram, but during the coarsening regime the equilibrium particle
radii are expected to be large, and an average particle radius 7, when coarsening starts is large,
thus, the range of error should be small. Rigorously, [Ac?) in equation [7.10] must be expressed
as a function that describes the 3/8 4+ a boundary in the phase diagram as r is varied, which

complicates the analysis as it will produce different expressions for the coarsening kinetics
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for each system; therefore, equation [7.13] is employed as a first approach. In substitution of

equation [7.13] in equation [7.10] it is obtained:
dr 1
= A{t} — — 7.14
ol = tam- L) (7.14)
where @ = (c?2][u?][D]'[Ac*?) characterises the coarsening resistance of the material and
Qf =20V, + (c?°)[WP][AcP)T, the total energy increase of 3 phase as a curvature is present.
Solute concentration

The second element of the theory is mass balance of the alloy, this can be expressed as

0 47

= (1-e)+e,d" ) eu= g5 [ P f{rt)dr (7.15)
m /0

for j = 1,2,...,C components, where ¢, is the volume fraction of g phase and f{r,t} the
particle radius distribution function. Subtracting C?’B from equation [7.15] and multiplying it

by cﬁa,u?j it is obtained

Ppg (= %) = (1=, ) usi (e, — 87 + el ug (" — ¢2P) o, gy (P} — &)

or

where A, = (cP°][u][c2”) is the initial cumulative supersaturation of the alloy before pre-
cipitation starts, I', = (¢??][u°][Ac®P) is a time—independent scalar that accounts for the
interactions of the system at equilibrium [Umanstev and Olson, 1993], A = (?°][u*][AcP)
characterises the binary interactions of the solute concentration increment in § phase as cur-
vature changes, this is a function of curvature and can be approximated for a reference radius

and composition shift as
T,
A0 = (1 - S‘QU)A{t} + Q‘OUFC + QDUAT?7 (717)

where A, = (cP][u][AcP).

After long time coarsening, excess solute will vanish in the matrix as the particles thicken
to large radii, causing the volume fraction to tend to the limiting value o = A,/['.
Continuity equation

The last element of the theory is the application of the continuity equation to the particle
radius distribution function f{r,t¢}:

of or|
8t+8 {fat} 0 (7.18)
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Equations [7.14, 7.17, 7.18] can now be solved using the methods of LS or MR assuming
a small precipitate volume fraction, leading to the next expressions for average particle size
7{t}, supersaturation A{t} and number N of precipitate particles. When the method of MR is
employed, a time scaling technique is used to derive the power law dependence and distribution

function for the size of the precipitating particles; this will produce the expressions:

R{t} = (2/3)2Kt +0{1}, K =90/ (7.19)
A{t} = 30V, )2301/3=1/3 L 0{t72/3) (7.20)
N{t} = 3p®/4no)t~! + O{t4/3} (7.21)

Where the terms of the type O{z} can be obtained from expanding to higher order terms the
distribution function for the size of the precipitates [Marqusee and Ross, 1983]; for large values
of ¢t these will vanish in equations [7.20] and [7.21], reducing to LS approximation. Term O{1}
in equation [7.19] can be adjusted if the initial average radius in known.

To assess the effects of adding (c??][u”][Ac®) in the Gibbs—Thomson equation and in
coarsening kinetics, it is first recognised that the product of the vectors (¢°°] and [uP][AcP)
represents a dot product which accounts for the change on the Gibbs energy of the  phase pro-
jected in the composition (¢°]; similarly, (e#][u®][Ac®) represents the Gibbs energy change of
the a phase projected in the composition (¢®]. The generalised form of the Gibbs—Thomson
equation is shown schematically in Fig. 7.1, showing that the satisfaction of equation [7.5]
requires a negative value of (c?®][u”][Ac?); this represents the energy “stored” in the 3 phase

when a curvature is present, and “released” upon precipitation as thickening occurs.

a p
v

" ach) | /1
T | 29Vh
! R
PN Ac™) | l

Fig. 7.1 Schematic representation of the equilibrium conditions required by
equation [7.5].
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Equations [7.11] and [7.19] show that for (c?][u”][Ac?) > 0, r_ and K are larger, and
the opposite is true for (c??][uP][Ac?) < 0. Furthermore, equations [7.14] and [7.19] show that
coarsening in a multicomponent system is not independent of the solution thermodynamics
followed by the continuous phase due to the term [AcP) represents a curve in an C' dimensional
space which connects the initial and final states of the 5 composition with their corresponding
« concentrations as coarsening progresses. This is consistent with Gibbs phase rule, which
requires that for a 2 phase system where the pressure and temperature are set, the number of
degrees of freedom is C' — 2. Previous investigations have reached opposite conclusions when
the thermodynamics of 3 phase are neglected [Umanstev and Olson, 1993, Morral and Purdy,
1994].

7.4 Summary

Expressions for the average particle radius, matrix composition and number of particles
have been obtained when allowing for changes in chemical potential and composition shifts of
the product phase in the coarsening regime. As opposed to previous theories, the results show

dependence on the solution thermodynamics followed by the continuous phase.
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CHAPTER 8

Model for needle—shaped precipitates
in multicomponent alloys

8.1 Introduction

This chapter introduces a computational model for overall kinetics that incorporates the
concepts of needle-shaped particle growth presented in Chapters 4, 5 and 6. Rigorous ther-
modynamic equilibrium of each particle is taken into account, and coarsening is incorporated.
The model is then applied to obtain the kinetics of precipitation in a secondary hardening
steel. The information cast includes the number distribution of particles characterised by a
given needle equilibrium tip radius, length and thickness during growth and coarsening regimes.
This information is simply not available from previous models, which assume a constant aspect

ratio, and it may be an aid to the design of alloys with improved mechanical properties.

8.2 Model

The model presented here is aimed at predicting the precipitation and coarsening ki-
netics of carbides in the secondary hardening steel Fe—0.11C-1.95Mo wt.%, which was studied
originally by Hall et al. [1972]. They obtained the isothermal lengthening rate of Mo,C needle—
shaped precipitates for temperatures ranging from 600 to 750°C.

During the first stages of heat-treatment, cementite, which is kinetically favoured, is
assumed to form by a paraequilibrium mechanism from ferrite. The cementite first enriches in
substitutional solutes and later dissolves as the more stable Mo, C precipitation gathers pace,
and grows and coarsens until equilibrium is reached. In the present work it is assumed that
the interfacial energy per unit area (o) of Mo,C in ferrite remains constant as precipitation
proceeds, and that the Mo,C particles remain in thermodynamic equilibrium with ferrite,
whose concentration is updated at each stage of growth. The details of the model are discussed

next.

8.2.1 Cementite enrichment and dissolution

Cementite, which forms as a result of tempering, is known to form rapidly by a mechanism
which involves the diffusion only of substitutional atoms. Thus, the ratio of iron to substitu-
tional solute atoms does not change during this paraequilibrium transformation [Bhadeshia,

1985a).
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Since cementite forms rapidly in supersaturated ferrite, the starting microstructure for the
purposes of Mo,C formation is assumed to contain cementite precipitates. These cementite
particles change in composition during the ageing process. Bhadeshia [1989] has presented a

theory of cementite enrichment where the composition variation of a cementite particle is given

by

[z, (¢ — ¢)]?

where ¢ is the concentration of solute in cementite (6), ¢ is the average concentration of solute

of

in the alloy, ¢®? is the concentration of solute in ferrite («) in equilibrium with 8, and z, is

the cementite particle thickness. D is the solute diffusion coefficient in the matrix and ¢, the
time required for the cementite to reach a concentration ¢’.
Cementite will eventually dissolve when the average concentration of solute at the Mo,C

needle interface of each particle c%’ﬁ (where 8 stands for the Mo, C precipitate) is lower than

c®®. The dissolution velocity v,, is given by
8 af
¢’ —cp

G alBy __
v (¢’ —cPY=D —
C( T ) d

(8.2)
where d is the average distance between particles. To obtain c%ﬁ consider first the parabola

shown in Fig. 4.1a, which can be described as

W =4, (f, - 7,) (5

through the transformation z, = X/r, z, = Z/r, Iy = f,/r where z,, 2, are adimensional

parabolic coordinates, f, the adimensional focal distance, r the tip radius, and f, = r/2 is the

focal distance. Following Horvay and Cahn [1961], the radius of curvature at any point X of

r \273/2
e =ty |1+ (52)
P

3/2

the parabola is

or

Ry, =—-r[1+2]] (8.4)

where the mean value theorem can be applied to obtain the averaged parabolic radius of

curvature at the interface as

T /d/2r[1 +$2]3/2d$ (8.5)
o d/2r J, b b '

where d is the needle thickness. The integration of equation [8.5] gives [Gradshtein, 1965]
= r |1 3 3
R=— [ d u® + gdpu + = ln{dp + u} (8.6)

d, 477 8
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where d, = d/2r and v = (1+ d;)l/Q. Following the approximation of equation [6.45], where
the matrix interface composition is assumed to be proportional to the curvature along the
parabolic surface, the average concentration of a needle—shaped particle of tip radius r is given
by

20 _ on (8.7)

C =cC,.
R Ty

Referring to equation [8.2], the term d has traditionally been calculated as [Robson and
Bhadeshia, 1997a, Fujita and Bhadeshia, 1999]:

d==(N;+ Ny~ (8.8)

N | —

But this accounts for the average distance between the totality of N, and N particles that are
not distinguished, as shown in Fig. 8.1, where particles separated by an approximate distance
of d are marked. However, dissolution of cementite () in favour of Mo,C () requires the
average distance between # and  particles. In order to do this, first consider a distribution
of particles denoted by e and o (Fig. 8.2). If there are many more e particles that dissolve in
favour of o (Fig. 8.2a), and these are characterised by N, and N, particles per unit length, the
average distance between e and o is
NG'/2

[ N, XdX

= 4 B
d= NTl/2 4 (8.9)

[ N,dx
0

©

If the density of N, is much lower than for o (N, < N,) as shown in Fig. 8.2b it can be
assumed that a e particle dissolves in favour of its nearest o particle within a radius of N_/2.

It is important to remark that d in equation [8.9] depends only on N,.

O
O

Fig. 8.1: To show that the average distance given provided by equation

[8.8] is the same regardless of the nature of the particle.
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Fig. 8.2:  Average distances between particles for (a) N, > N, and (b)
N, > N,.
In the three dimensional case, the average distance of # dissolving in favour of j is

(Ng)~1/?
[ Ngr(4wridr)
0

N[—

= §(Nﬁ)_1/3 (8.10)

d= 4_(1 3
(V) N, S

which shows dependence on N only. It is seen that the use of equation [8.10] instead of (8.8)
at early stages of cementite dissolution, when Nj is several orders of magnitude lower than
N,, produces a large difference in d.

In obtaining the dissolution velocity of cementite as provided by equation [8.2], the thick-
ness of cementite particles was considered to be of 20 nm by those precipitated within the
martensite laths, and of 50 nm for those particles at the lath boundaries [Fujita, 1999, 2000].

The concentration used in equation [8.1] is that of Mo, since this component enriches the
cementite. In equation [8.2] the Mo concentration is used as well, due to it is characterised by a
much smaller diffusion coefficient than C, and thus is assumed to control the rate of cementite

dissolution.

8.2.2 Nucleation of Mo, C

Classical theory [Christian, 1975] is used to estimate the nucleation rate I for Mo,C

kT G*+Q*
where
16703
P 12
EETINCRE (8:.12)

where h and k are the Planck and Boltzmann constants, respectively, @* is the activation
energy for the transfer of atoms across the nucleus/precipitate interface, assumed to be one

half of the activation energy for Mo diffusion [Christian, 1975].
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Referring to equation [8.12], o is the surface energy per unit area and AG), is the chemical
free energy change per unit volume. AG,, was obtained by subtracting the Gibbs energy of a
particle that nucleates at a critical radius r* and that of a particle of infinite radius as

1 o * o * o *
ACTY'U = ‘/_ [(Cf/IOHMO{r } + Cg MC{Tz } + C}‘ge MFe{r })

- (61[\3/16:)#1\/10{00} + el pe{oo} + Cg:HFe{OO})] (8-13)

where V, is the molar volume of 3 phase and ¢, iy, and pp, are the chemical potentials
of C, Mo, and Fe, respectively, and which are evaluated at a critical radius r* or an infinite

radius (flat interface).

8.2.3 Growth of Mo, C

To obtain the lengthening rate of Mo,C needle-shaped particles, it is necessary to solve

equation [6.55] for i =C, Mo. The matrix composition ¢, is updated with time, and appropriate

values of cfﬁo, cfg, cﬁ/f{i, c%ﬁ, cfﬁo, cfg, g, and r have to be substituted in [6.55]. This

complicated task is enormously simplified if it is recognised that the Mo,C composition cfa is

Ba

not significantly altered by curvature (i.e. ¢, ~ cfcy)7 and thus equation [6.55] can be written

as
1
sz‘ = p;exp{p;} Ey{p;} |1+ ;QpiR?{pi} (8.14)
where
Cc. — C{lﬁ
g, — 4" (8.15)
' C?f - C?ﬁ

is the shift of the ¢ solute composition, which has been defined in analogy to the term r/r_ in
equation [5.19] and ranges from zero to infinity for a flat interface. Note that Q; in [8.14] is
reduced to Q; for cfia = cfa.

To solve equation [8.15] for ¢ =C, Mo consider Fig. 8.3, this shows that for given super-
saturations of Mo and C, €Q,,;, and €, respectively, the solutions for the Péclet number of
Mo and C, range between two values denoted by pi, and pZ_ for Mo, and p& and pZ for C.
s = 6 gives the minimum value of sy;, and Péclet number, which combined with pg;, solves
equation [8.14] for Mo, whereas s — oo will provide the maximum value of s,;, and Péclet
number which, combined with pZ_ solves [8.14]. Thus, in this case s;, ranges between 6 and
infinity. sq is got from the intersection of po = py, Dyio/De and Qp, as shown in Fig. 8.3.
But there is a collection of values of sq, sy, that solve equation [8.15], each pair of sq, Sy,

defines a needle tip radius. The one that provides the maximum lengthening rate through

_ 2P0 Py 2Pc Do

p r r
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was considered. Note that Iig. 8.3 shows that there are minimum values of s- and s, for
needle equilibrium growth, from equation [8.15] it is seen that these set the compostions cff
(t =Mo, C) that are closest to the matrix concentration, and thus set the minimum radius at
which the needle tip can form under the present shape preserving assumption.

In this computational model, all the needle particles characterised by different tip radii

are updated in their equilibrium compositions with the matrix at any stage of growth.

Q

e, w | |
le+02 4—— ‘ E
i — — - s=infinity //E
le+01 % E
le:00f _ === 3
1 e— 21
le01 o : - = 3
. B ~ E

o 1Pw -
le02 o 77 4L
= A E

Pe™ 3,/ “Pw i
1le-03 /. 6—F
7/ A E

3 P -

3 10
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0.00 0.25 0.50 0.75 1.00
Q
Fig. 8.3: IS contours to show solution to equation [8.15] for the shown

values of ) and £2,,,. The solution involves a range of values from pé, pf\{/fo

to pg, pﬁo, and the corresponding values of s, which approximately range
from 6 < s,,, < 00, and 8 < 5, < co.

8.2.4 Precipitate coarsening and dissolution

Normally there is an arbitrary division between growth and coarsening, which is not
necessary when capillarity is taken into account. However, for needles, small and large particles
have the same tip radius with the assumption of the shape—preserving solution. Therefore,
there can be no coarsening if the difference in tip concentrations is assumed to provide the
driving force for coarsening.

Coarsening must involve spherodization of the needles. Therefore, in this model it is
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assumed that growth continues until a critical amount of solute is removed from the matrix,
after which equilibrium growth requires a very large needle tip raduis, which demands an
amount of solute in the precipitate inconsistent with mass balance. At this stage coarsening
is introduced, particles of a smaller average interface radius will dissolve in favour of those of
larger average interface radius due to a concentration gradient is present. The average interface

radius of a particle is obtained through equation [8.6], and the rate of dissolution is given by:

apl afs

vy (P28 — 2Py = piE R (8.16)

where ¢%9% is the solute concentration of the Mo,C small precipitate in equilibrium with the
matrix, which is assumed to be constant along the parabolic interface, c%ﬁs and c%ﬁl are the
average interface solute concentrations of the matrix in equilibrium with the precipitate of the
small and large particles, respectively. d holds the same form as in equation [8.10]; it is defined

in terms of large particles as

— 3 _
d= g(Né) 1/3 (8.17)

where Né is the number density of large Mo, C particles per unit volume.
In order to calculate the rate of particle thickening, it is necessary to obtain expressions for
the parabola length and thickness. From equation [8.3], it is possible to express the parabola

as

X =V2Zr (8.18)

by locating the needle tip at Z = 0 and rotating 180°. A differential volume element of the
needle normal to its main axis is dVy = 7 X%dZ = 2nZrdZ. If | is the needle length, then the

volume can be calculated by integration as

N\ 2
Vv = 27”“(5) (8.19)
and the needle thickness d can be calculated as
d=2VIr (8.20)

In this model, the dissolution of a needle (small particle) is supposed to decrease its length,
keeping its thickness constant, whereas thickening of a (large) particle is assumed to increase its
thickness, keeping its length constant; this means that small particles will evolve to spheres of
a decreasing radius of curvature, until they disapear, whereas large particles evolve to spheres

of an increasing radius. From equations [8.19, 8.20], and assuming mass balance, i.e. that the
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solute removed from the dissolving particle is equal to that incorporating in the coarsening

particle, the expressions for the change in volume of the small and large particles are given by

% apl _ afs
dl‘ sfgt (Cﬁas _ C?ﬁs) — D% (8.21)
§7T

2 ! l C%ﬁl - C%ﬁs
dv,/dt W(Cﬁa — cffﬁ )= DT (8.22)

where V, and V; are the volumes of small and large particles, respectively.

In coarsening regime, the independent interaction of all particles of different radii is ac-
counted for, and the volume of each updated accordingly. In analogy to cementite dissolution,
Mo controls the dissolution and thickening of particles in this regime.

8.2.5 Mass balance

At every time step, solute mass balance is taken into account by updating the C and Mo

matrix composition as

> Vjﬁ(cfz‘a —c{t =0} + Xk: Vi(eh; —epdt = 0)

e{tt=c{t=0}-- T S (8.23)
A

where ¢« =C, Mo and the subscripts 7 and £ label the particles of Mo,C characterised by

different average interface radius, and

Y vi=v? (8.24)
J

Y vi=ve (8.25)
k

account for the total transformed volumes of 8 and 6 phases, respectively, c?ia, cf. are the i

concentrations of j~Mo,C and k—cementite particles, respectively, and ¢,{t = 0}, ¢,{t} are the

matrix concentrations of ¢ solute when precipitation starts and at time ¢, respectively.

8.3 Computational model: results and discussion

The computational model requires six parameters to be considered, the surface energy per
unit area of Mo,C/ferrite interface (o), the initial number density (N;) of Mo,C nucleation
sites per unit volume, the diffusivity of Mo and C in ferrite (D, and D, respectively), and

the activation energy for diffusion of Mo and C (@, and @, respectively). The values of
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Parameter Value
o 0.0339 J m~?
N 1%10° m~?
Dy, 1.1x10~* m? s~!
Qnmo 240x10% J mol~!
D 2.2x107* m? 1
Q¢ 122x10% J mol ™!

Table 8.1: Parameters used in the calculations

o and N are fitted empirically to adjust the results to the observations of Hall et al. [1972],
whereas the diffusivity and activation energy for Mo are those reported by Fridberg et al.
[1969], and the diffusivity and activation energy for C have been provided by Wilkinson [2000].
These data are shown in Table 8.1.

Additionally it is required to obtain the cementite paraequilibrium and equilibrium com-
positions for cementite enrichment and dissolution, these are extracted from MTDATA [1995]

for temperatures ranging between 600 to 750 °C as shown in Table 8.2.

Cementite stage | Temperature/® C C Mo Fe
equilibrium 600 0.25 0.0698784 Bal.
paraequilibrium 600 0.25 0.0085927 Bal.
equilibrium 650 0.25 0.0614924 Bal.
paraequilibrium 650 0.25 0.0085927 Bal.
equilibrium 700 0.25 0.0545462 Bal.
paraequilibrium 700 0.25 0085927 Bal.
equilibrium 750 0.25 0.0485998 Bal.
paraequilibrium 750 0.25 0.0085927 Bal.

Table 8.2: Equilibrium and paraequilibrium cementite compositions

As described in previous sub-section, the Gibbs energy for particle nucleation (AG, in
equation [8.12]) is a function of time and curvature through the composition of each precipitate
characterised by a different tip radius (equation [8.13]). AG, was extracted from MTDATA

through a computer program (Appendix 5) that varies the composition of C, Mo and curvature,

94



and obtains the chemical potential of each component in the form of tables. Those tables were
used as input data of a program (Appendix 6) that obtains the overall kinetics (nucleation—
growth—coarsening) of Fe-0.11C-1.95Mo wt.%.

The results for particle length are shown in Fig. 8.4, where the solid line represents the
length of the longest particle at a given time, the dots are the measurements of the longest
needle performed by Hall et al. [1972], the dotted line joins the average particle length obtained
by the model at those times, and the error bars represent 1.3 standard deviations around the
average length, to account for 90% of the particles. The measurements performed by Hall et al.
were done in lots for at least 100 particles, so it is expected that their measurements lie inside
the ranges given by the error bars. At 700 and 750 °C (Figs. 8.4c,d) the agreement between
the measurements and the maximum length obtained by the model is extremely good, but at
600 and 650 °C this appears to be lower. To interpret these data, it must be considered that at
the longer tempering times associated with lower temperatures there is a much wider range of
particle lengths, therefore, the probability of finding the longest particle particle described by
the solid line is much lower; the fact that the experimental measurements lie within the error
bars is a proof that the model is capable to predict the existence of particles characterised
by the lengths experimentally observed. A surface energy per unit area of 0.0339 J m~?2 was
selected so that the agreement at higher temperatures is best due to their measurements are
considered to be more accurate.

Fig. 8.5 shows the length of the particles that nucleate first. Consistent with the Trivedi’s
theory for Henrian solutions, Fig. 8.5 reveals that there is an approximately linear relation
of particle length with time, this is not the case for particle thickness, whose rate of growth
decreases with time (I'ig. 8.6), as expected with the shape preserving solution, where thickness
should be proportional to ¢'/2.

The needle aspect ratio (length/thickness) for the particles that lengthen from the first
time step is shown in Fig. 8.7; the values well agree with the measured aspect ratios of Mo,C

from Fujita [2000], which lie between 10 and 20.
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Fig. 8.4: Length of the longest particle (solid line) and average length
(dotted line) as a function of time. The dots represent the experimental mea-

surements by Hall et al. [1972], and the error bars 1.3 standard deviations

around the average length calculated.
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Fig. 8.7:  Calculated aspect ratio of the particles that nucleate in the first

time step.

During the growth process, cementite eventually will dissolve and Mo,C particles will
reach a maximum length prior to thickening, this situation is shown in Fig. 8.8, where the
dotted line represents the volume fraction of cementite, and the solid line that of Mo,C.

The behaviour of the needle tip radius of the particle that lengthens from the first time
step is shown in Fig. 8.9. Its variation depends on the matrix solute content, which is af-
fected by cementite dissolution, growth and coarsening of other particles. Consistent with the
observations of Hall et al. [1972], it is increased with temperature, and as expected from the
depletion of solute in the matrix, it increases with time.

During the coarsening regime, the average number of particles is reduced by several orders
of magnitude (Marqusee and Ross [1983]), this is confirmed in Fig. 8.10.

LSW theory predicts that the coarsening regime is accompanied by an average particle

radius increase in proportion to t'/2, an effect shown in Fig. 8.11 with the aid of the grid lines.
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Fig. 8.11: Calculated particle average radius during growth and coarsening.

8.4 Critical assessment and conclusions

A new model to predict the overall kinetics of cementite dissolution and Mo,C growth and
coarsening has been presented. This model rigorously deals with multicomponent capillarity

and diffusion effects, and treats individually each particle for thermodynamic equilibrium with
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the matrix, accounting for dissolution or thickening. From Fig. 8.3, it is seen that its extension
to more than three diffusing components is immediate and just depends on finding the ratio
between diffusion coefficient of the components, the values of s;, and hence obtaining the
compositions and tip radius.

The agreement with measured data is good, and the method is capable of predicting
particle length and thickness, and hence aspect ratio, along with the distribution of particles
characterised by these. This information is essential for alloy design as mechanical properties
change due to dislocation interactions with the precipitates.

This model assumes no variation of precipitate composition with curvature, this is justified
for Mo, C kinetics, but is not general. Furthermore, it has been assumed, with no justification,
that coarsening starts immediately after growth, while Fig. 8.10 seems to suggest that combined
growth and coarsening may occur during late growth stages due to the number of particles
decrease immediately after the straight—line growth regime; however, the error seems to be
small due to a small decrease in the number of particles after growth requires several orders of

magnitude of time increase.
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CHAPTER 9
Conclusions and suggestions for further work

A solution for the growth of spherical precipitates with capillarity in dilute ideal solutions
was presented, showing that the overall effect of capillarity was to reduce the growth rate of
the particle. The solution was extended to incorporate multicomponent effects in concentrated
solutions.

A solution for the growth of needle and plate-shaped precipitates with small supersatu-
rations was presented. This was extended to incorporate multicomponent diffusion, interface
kinetics and capillarity effects in Henrian and concentrated solutions. The solution showed
that the maximum velocity hypothesis cannot be sustained for Henrian solutions in the mul-
ticomponent scenario, and that upper and lower bounds are imposed in the Péclet number
when interface kinetics and capillarity effects become prominent, respectively. The concept of
interface saturation contours has been introduced in order to demonstrate that when two com-
ponents of different diffusion coefficient are present in the alloy, the supersaturations required
for equilibrium growth are limited depending on the curvature of the particle and interface ki-
netics. A methodology to simultaneously solve the mass balance equations has been presented.
The method was extended for concentrated solutions.

Theory for coarsening of particles has been developed to account for composition shifts in
the precipitated phase. As opposed to previous theories, the results showed that coarsening in
a multicomponent system is not independent of the solution thermodynamics followed by the
continuous phase.

A computational method to apply the theory for multicomponent growth of needles in
concentrated alloys was presented, and applied to obtain the precipitation kinetics of Mo,C in
a secondary hardening steel of composition Fe-0.11C-1.95Mo wt.%. The results predicted by
the program are in good agreement with experimental observations, and new information was
cast such as the change of the needle aspect ratio and the particle size dispersion with time.
This information, which was not available from previous models, will be an aid to develop
alloys of improved mechanical properties.

The theory presented here can be applied to obtain the kinetics of precipitation when any
number of phases and components are present; thus, it is required to extend the computational
method presented here for this scenario. In doing this, the accuracy of the predictions can

be improved if the surface energy is experimentally obtained via the concentration gradient
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method presented by Miyazaki [1999]. A correlation between mechanical properties such as
yield strength, composition and heat treatment can now be obtained through application of
the dislocation theory [Dieter, 1988].

The coarsening theory presented in Chapter 7 can be experimentally validated through

the study of particles whose composition significantly varies as coarsening progresses.
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APPENDIX 1

This appendix presents the computer programs described in Chapter 3 that obtain the

variation of the growth parameter with supersaturation (Figs. 3.2, 3.3) and the variation of

the growth parameter with the particle radius (Figs. 3.4, 3.5).

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

The programs can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program MAP ZENER_CAPI

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of growth parameter o as a function of € supersaturation.

Specification

This is a self-contained program written in FORTRAN 77.

Description
The program solves equation [3.11] as supersaturation is varied, and for given values of

r/r., casting the data utilised to plot Figs. 3.2, 3.3.

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Theory for growth
of spherical precipitates with capillarity effects, Materials Science and Technology, 17, 30—
32.

2. Chapter 3.

Parameters

Input parameters
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R - double precision

value of r/r,.

Output parameters
O - double precision

Q) supersaturation.

GP - double precision

o, growth parameter.

1.7. Error Indicators

None.

1.8. Accuracy

No information supplied.

1.9. Further Comments

The program is set to write the results to file ’resl.d’.

1.10. Example
1. Program data
The data can be found in the program.
2. Program results

See sample results file ’resl.d’.

1.11. Auxiliary Routines
The subroutines called by this program are:

ERROR

1.12. Keywords

capillarity, sphere, growth, parabolic growth

2. Program MAP _ ZENER_CAPI1

2.1. Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,
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2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of growth parameter o, with adimensional sphere radius variation

r/r,.

Specification

This is a self-contained program written in FORTRAN 77.

Description
The program solves equation [3.11] as r/r, is varied and for given values of supersaturation,

casting the data utilised to plot Figs. 3.4, 3.5.

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Theory for growth
of spherical precipitates with capillarity effects, Materials Science and Technology, 17, 30—
32.

2. Chapter 3.

Parameters

Input parameters

O - double precision

Q supersaturation.

Output parameters

R - double precision

value of r/r,.

GP - double precision

o, growth parameter.

Error Indicators

None.
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2.8. Accuracy

No information supplied.

2.9. Further Comments

The program is set to write the results to file ’resl.d’.

2.10. Example
1. Program data
The data can be found in the program.
2. Program results

See sample results file ’resl.d’.

2.11. Auxiliary Routines
The subroutines called by this program are:

ERROR

2.12. Keywords

capillarity, sphere, growth, parabolic growth

107



APPENDIX 2

This appendix presents the finite differences computer program described in Chapter 3 that
obtains the variation of the growth parameter with supersaturation. The solution presented
here is described in section 3.3, and produces data to obtain Fig. 3.7. The program presented
here is set to calculate the parameters for Q = 0.75.

The program can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program MAP READ75

1.1. Provenance of Source Code
P. E. J. Rivera Diaz del Castillo,
Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,
Cambridge, U.K.

1.2. Purpose
To obtain the variation of growth parameter a; as a function of r/r, for different values

of Q supersaturation.

1.3. Specification
This is a self-contained program written in FORTRAN 77.

1.4. Description
The program solves equations [3.13-3.16] as r/r, is varied and for given values of €,

producing data utilised to plot Fig. 3.7.

1.5. References

1. Chapter 3.

1.6. Parameters

Input parameters

none

Output parameters
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AL - double precision array of size 50

o, growth parameter for small growth rates.

IC - double precision array of size 50x2

g x r,/D for small growth rates.

RHOR - double precision

r/r,. adimensional radius.

PRALPH - double precision

o, growth parameter.

PRSP - double precision
gxr,/D.

1.7. Error Indicators

None.

1.8. Accuracy

No information supplied.

1.9. Further Comments

The program is set to write the results to file 'read75.d’.

1.10. Example
1. Program data
The data can be found in the program.
2. Program results

See sample results file 'read75.d’.

1.11. Auxiliary Routines
The subroutines called by this program are:
ZENER
ERROR
AC

1.12. Keywords

capillarity, sphere, growth, parabolic growth, finite differences, numerical solution
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APPENDIX 3

This appendix presents the computer programs referred in Chapter 4 that obtain the

functions 5, S, and R, R, for plate and needle growth, respectively, which have been plotted

in Fig. 4.2, 4.3.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

The programs can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program MAP PARAMETER S1

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of functions 5;, S, with Péclet number p.

Specification

This is a self-contained program written in FORTRAN 77.

Description

The program obtains the variation of S;, S, functions defined in section 4.3.

References

1. Rivera-Dfaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.

Parameters

Input parameters

none

110



Output parameters

N1, N2 - double precision
M,, M, functions.

S1, S2 - double precision
Sy, S, functions.

P - double precision

Péclet number p.

1.7. Error Indicators

None.

1.8. Accuracy

No information supplied.

1.9. Further Comments

The program is set to write the results to files 'resl.d’, ’res2.d’.

1.10. Example
1. Program data
The data can be found in the program.
2. Program results

See sample results file 'resl.d’, ’res2.d’.

1.11. Auxiliary Routines
The subroutines called by this program are:
ERROR
GAMMA
LGAMA
CHGU
PSI

1.12. Keywords

capillarity, interface kinetics, plate, growth, Trivedi

2. Program MAP PARAMETER_R1
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2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of functions R, R, with Péclet number p.

Specification

This is a self-contained program written in FORTRAN 77.

Description

The program obtains the variation of R, R, functions defined in section 4.2.

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.

Parameters

Input parameters

none

Output parameters
N1, N2 - double precision
N;, N, functions.

R1, R2 - double precision

R, R, functions.
P - double precision

Péclet number p.

Error Indicators

None.
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2.8. Accuracy

No information supplied.

2.9. Further Comments

The program is set to write the results to files 'resl.d’, ’res2.d’.

2.10. Example
1. Program data
The data can be found in the program.
2. Program results

See sample results file 'resl.d’, ’res2.d’.

2.11. Auxiliary Routines
The subroutines called by this program are:
ERROR
GAMMA
LGAMA
CHGU
CHGUS
CHGUL
CHGUBI
CHGUIT
INTE
PSI

2.12. Keywords

capillarity, interface kinetics, needle, growth, Trivedi
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APPENDIX 4

This appendix presents the computer programs referred in Chapter 4 that obtain the

variation of supersaturation with Péclet number and tip radius for plates and needles.

1.1.

1.2.

1.3.

1.4.

1.5.

The programs can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program M AP PLATE2

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of €2 with Péclet number p and the ratio of the plate tip radius and
the critical radius for nucleation r/r,. The output of this program is plotted in Figs. 4.6,
4.7.

Specification

This program reads the value of ¢, and a table with the variation of M, and M, with p
from the input data file ’indat11.d’, and writes the output in the file 'resl.d’. The code is
written in FORTRAN 77.

Description

The program obtains the variation of Q with p and r/r, by simultaneously solving equa-

tions [4.9] and [4.10].

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.
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1.6. Parameters

Input parameters

Q - double precision

q, characterises relative importance of interface kinetics and diffusion effects.

PEC - double precision array of size 6053

Péclet number p.

N1, N2 - double precision arrays of size 6053
M,, M, functions.

Output parameters

O - double precision

Supersaturation £2.

RRR - double precision
Value of r/r,.

P - double precision

Péclet number p.

1.7. Error Indicators

None.

1.8. Accuracy

No information supplied.

1.9. Further Comments

The program is set to write the results to file ’resl.d’.

1.10. Example
1. Program data
See input data file 'indat11.d’.
2. Program results

See sample results file ’resl.d’.

1.11. Auxiliary Routines
The subroutines called by this program are:

ERROR
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1.12.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Keywords

capillarity, interface kinetics, plate, growth, Trivedi

2. Program MAP PLATE3

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose
To obtain the variation of small values of € with Péclet number p and the ratio of the
plate tip radius and the critical radius for nucleation r/r,. The output of this program is

plotted in Figs. 4.10, 4.11.

Specification

This program reads the value of ¢, and a table with the variation of M, and M, with
p from the input file ’indat11.d’, and writes the output in the file 'resl.d’. The code is
written in FORTRAN 77.

Description
The program obtains the variation of Q with p and r/r, by simultaneously solving equa-

tions [4.9] and [4.10].

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.

Parameters

Input parameters
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Q - double precision
¢, characterises relative importance of interface kinetics and diffusion effects.
PEC - double precision array of size 6053
Péclet number p.
N1, N2 - double precision arrays of size 6053
M,, M, functions.
Output parameters
O - double precision
Supersaturation 2.
RRR - double precision
Value of r/r,.
P - double precision

Péclet number p.

2.7. Error Indicators

None.

2.8. Accuracy

No information supplied.

2.9. Further Comments

The program is set to write the results to file ’resl.d’.

2.10. Example
1. Program data
See input data file 'indat11.d’.
2. Program results

See sample results file ’resl.d’.

2.11. Auxiliary Routines
The subroutines called by this program are:

ERROR

2.12. Keywords

capillarity, interface kinetics, plate, growth, Trivedi, low supersaturations

117



3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3. Program MAP NEEDLE?2

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose

To obtain the variation of 2 with Péclet number p and the ratio of the needle tip radius and
the critical radius for nucleation r/r,. The output of this program is plotted in Figs. 4.4,
4.5.

Specification

This program reads the value of ¢*, and a table with the variation of N; and N, with
p from the input file ’indat11.d’, and writes the output in the file 'resl.d’. The code is
written in FORTRAN 77.

Description
The program obtains the variation of Q with p and r/r, by simultaneously solving equa-

tions [4.4] and [4.5].

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.

Parameters

Input parameters

Q - double precision

¢, characterises relative importance of interface kinetics and diffusion effects.

PEC - double precision array of size 20010

Péclet number p.
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N1, N2 - double precision arrays of size 20010

N;, N, functions.
Output parameters

O - double precision

Supersaturation £2.

RRR - double precision
Value of r/r,.
P - double precision

Péclet number p.

3.7. Error Indicators

None.

3.8. Accuracy

No information supplied.

3.9. Further Comments

The program is set to write the results to file ’resl.d’.

3.10. Example
1. Program data
See input data file ’indat11.d’.
2. Program results

See sample results file ’resl.d’.

3.11. Auxiliary Routines
The subroutines called by this program are:

E1XB

3.12. Keywords

capillarity, interface kinetics, needle, growth, Trivedi

4. Program MAP NEEDLE3
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4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose
To obtain the variation of small values of €2 with Péclet number p and the ratio of the
needle tip radius and the critical radius for nucleation r/r,. The output of this program

is plotted in Figs. 4.8, 4.9.

Specification

This program reads the value of ¢*, and a table with the variation of N, and N, with
p from the input file ’indat11.d’, and writes the output in the file 'resl.d’. The code is
written in FORTRAN 77.

Description
The program obtains the variation of Q with p and r/r, by simultaneously solving equa-

tions [4.4] and [4.5].

References

1. Rivera-Diaz-del-Castillo, P. E. J. and Bhadeshia, H. K. D. H. [2001], Growth of needle
and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis,
Materials Science and Technology, 17, 25-29.

2. Chapter 4.

Parameters

Input parameters

Q - double precision

¢, characterises relative importance of interface kinetics and diffusion effects.

PEC - double precision array of size 20010

Péclet number p.

N1, N2 - double precision arrays of size 20010
N;, N, functions.
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Output parameters

O - double precision

Supersaturation €.
RRR - double precision
Value of r/r,.

P - double precision

Péclet number p.

4.7. Error Indicators

None.

4.8. Accuracy

No information supplied.

4.9. Further Comments

The program is set to write the results to file ’resl.d’.

4.10. Example
1. Program data
See input data file ’'indat11.d’.
2. Program results

See sample results file ’resl.d’.

4.11. Auxiliary Routines
The subroutines called by this program are:

E1XB

4.12. Keywords

capillarity, interface kinetics, needle, growth, Trivedi, low supersaturations
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APPENDIX 5

This appendix presents the computer program that extracts from MTDATA the thermo-

dynamic parameters required by the model described in Chapter 8.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

The program can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program MAP CHEM_POT6

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose
To obtain the variation of chemical potentials and equilibrium precipitate and matrix com-

positions of a system at a given temperature as the pressure of the system is incremented.

Specification

This program is to be compiled and run with the aid of MTDATA [1995].

Description

The program varies the pdV or pressure term in MTDATA, and thus allows to obtain
the change in equilibrium compositions of a system as the pressure or the surface energy
term is varied. For each pressure value the equilibrium compositions of the matrix and
precipitate are calculated, and the chemical potential of each component are obtained.

The program presented here is set to run for 600°C.

References

1. Chapter 8.

Parameters

Input parameters

none
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Output parameters
AVC - double precision

Average concentration of C in the alloy.

AVMO - double precision

Average concentration of Mo in the alloy.

PRESS - double precision

System pressure.

FC - double precision array of size 2500

Ferrite concentration of C.

FMO - double precision array of size 2500

Ferrite concentration of Mo.

CC - double precision array of size 2500

Mo, C concentration of C.

CMO - double precision array of size 2500

Mo, C concentration of Mo.

CPC - double precision array of size 2500
Chemical potential of C.

CPM - double precision array of size 2500
Chemical potential of Mo.

CPF - double precision array of size 2500
Chemical potential of Fe.

1.7. Error Indicators

None.

1.8. Accuracy

No information supplied.

1.9. Further Comments

The program is set to write the results to file ’chem.out’.

1.10. Example
1. Program data

The data can be found in the program.
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2. Program results

See sample results file 'chem.out’.

1.11. Auxiliary Routines

The are no subroutines used in this program.

1.12. Keywords

thermodynamic parameters, pressure, surface energy, MTDATA
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APPENDIX 6

This appendix presents the computer program associated to the computational model

described in Chapter 8 and aimed to predict the kinetics of nucleation—growth—coarsening of

a secondary hardening steel.

1.1.

1.2.

1.3.

1.4.

The program can be downloaded from http://www.msm.cam.ac.uk/map/mapmain.html.

1. Program MAP_CINFLE1

Provenance of Source Code

P. E. J. Rivera Diaz del Castillo,

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, U.K.

Purpose
To predict the kinetics of nucleation, growth and coarsening of Mo,C precipitating in

Fe-0.11C-1.95Mo wt.%.

Specification

This is a self-contained program written in FORTRAN 77.

Description

The program calculates the nucleation—growth—coarsening of Mo,C particles in a ferrite
matrix. The calculations are divided in time steps as precipitation progresses, and rigor-
ously account for mass balance and thermodynamic equilibrium of each particle at every
time step.

The program is set to read data from next input files:

indat11.d - table with variation of N, N, functions with p

chem.out - thermodynamic data (see Appendix 5).

The program is set to write the results in five files:

d1.d - kinetics of all the particles nucleating at any time step

d2.d - kinetics of particle that nucleates in the first step

d3.d - kinetics of needle nucleated at time step 16
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1.5.

1.6.

d4.d - overall kinetics, total volume fractions and matrix concentration

d5.d - evolution of longest needle with time, and size distribution

References

1. Chapter 8.

Parameters

Input parameters

AC - double precision

Average concentration of C in the alloy.
AM - double precision

Average concentration of Mo in the alloy.

PR - double precision

System pressure.

CCAB - double precision array of size 100000

Ferrite concentration of C.

CMAB - double precision array of size 100000

Ferrite concentration of Mo.

CCBA - double precision array of size 100000

Mo, C concentration of C.

CMBA - double precision array of size 100000

Mo, C concentration of Mo.

MUC - double precision array of size 100000
Chemical potential of C.

MUM - double precision array of size 100000
Chemical potential of Mo.

MUF - double precision array of size 100000
Chemical potential of Fe.

SIG - double precision

Surface energy per unit area.

QC - double precision

Carbon activation energy for diffusion.
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QM - double precision

Mo activation energy for diffusion.

NO - double precision

Initial number of Mo,C nucleation sites.

VB - double precision
Molar volume of Mo, C.

DOC - double precision
Diffusivity of C in ferrite.

DOM - double precision
Diffusivity of Mo in ferrite.

CTHB - double precision

Intergranular cementite plate thickness.

CTHG - double precision

Grain cementite plate thickness.

MOLC - double precision

Paraequilibrium cementite mol number.

MOLF - double precision

Paraequilibrium ferrite mol number.

TEM - double precision

Temperature.

CCCA - double precision

Paraequilibrium cementite C concentration.

MCCA - double precision

Paraequilibrium cementite Mo concentration.

CCAC - double precision

Paraequilibrium ferrite C concentration.

MCAC - double precision

Paraequilibrium ferrite Mo concentration.

Output parameters
ETIM - double precision

Time.
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LEN - double precision array of size 1000x 1000
Needle length.

TH - double precision array of size 1000x 1000
Needle thickness.

AVRA - double precision array of size 1000
Average needle interface radius.

RRIN - double precision array of size 1000

Needle tip radius.

VE - double precision array of size 1000x 1000

Needle lengthening rate.

NS - double precision array of size 10000

Number of nucleation sites.

ASRA - double precision array of size 1000x 1000

Needle aspect ratio.

DACC - double precision

Instant C matrix concentration.

DACM - double precision

Instant Mo matrix concentration.

TAPR - double precision

Total average needle interface radius.

TNP - double precision

Total number of particles.

TVF - double precision

Total volume fraction.

CAR - double precision

Coarsening needle average radius.

IVFC - double precision

Instant cementite volume fraction.

MALE - double precision
Length of longest needle.

MATH - double precision
Thickness of the longest needle.
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1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

AVLE - double precision
Average particle length.

SDLE - double precision
Standard deviation of length.

Error Indicators

None.

Accuracy

No information supplied.

Further Comments

none.

Example

1. Program data

The data can be found in the program.
2. Program results

See sample results file ’chem.out’.

Auxiliary Routines

The are no subroutines used in this program.

Keywords

secondary hardening, kinetics, precipitation, Trivedi
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