Chapter 4

Yield and Ultimate Tensile Strength
Models

The conventional method for developing a new weld metal with desired mechanical properties
involves the design of a series of weld metals, varying chemical compositions and welding pa-
rameters. These welds are then manufactured and tested. A choice is then made of a particular
combination of variables which best meets the requirements. Cost and time savings might be
achieved with the help of appropriate models which reduce the number of steps needed.

The physical models discussed in Chapter 2, based on strengthening mechanisms, are not
sufficiently sophisticated to enable a proper treatment of the problem. At the same time linear
regression methods are not capable of representing the real behaviour which is far from linear
when all the factors are taken into account.

On the other hand, the neural network method described in Chapter 3 is ideally suited to
complex phenomena with many variables. In the present work, neural networks are used to
model the yield strength and ultimate tensile strength of weld metal as a function of weld metal
chemical composition, welding parameters and heat treatment conditions. Previous research
along these lines by Cool et al. [27] was based on a rather limited database. The models are

then used to design new alloys of use in the fabrication of power plant components.

4.1 Database

All of the data collected are from multirun weld deposits in which the joint is designed to
minimise dilution from the base metal, to enable specifically the measurement of all-weld metal
properties. Furthermore, they all represent electric arc welds made using one of the following
processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas
(TIG). The welding process itself was represented only by the level of heat input. This is because
a large number of published papers did not specify welding parameters in sufficient detail to

enable the creation of a dataset without missing values. Missing values cannot be tolerated
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in the method used here. If the effect of a welding process is not properly represented by the
heat input and chemical composition, then neglect of any important parameters will make the
predictions more ‘noisy’. As discussed below, the noise in the output was found to be acceptable;
a greater uncertainty arises from the lack of a uniform coverage of the input space. The data
were collected from a large number of sources [28] to [88].

The aim of the neural network analysis was to predict the yield and tensile strength as a
function of a large number of variables, including the chemical composition, the welding heat
input and any heat treatment. The databases for the yield and ultimate tensile strength (UTS)
are different because the UTS database also included the oxygen concentration since tensile
failure should depend on inclusions which nucleate voids. As a consequence, the yield strength
database consists of 2002 separate experiments whereas the UTS database is slightly smaller
at 1972 experiments since the oxygen concentration was not always reported. Neural network
method used in this work cannot cope with missing values of any of the variables. In 14 cases
the sulphur and phosphorus concentrations were not available. Since these impurities might
be important, it would not be satisfactory to set them to zero. Missing values of sulphur and

phosphorus were therefore set at the average of the database.

4.1.1 Yield Strength Database

Table 4.1 shows the range, mean and standard deviation of each variable including the output
(yield strength). The purpose here is simply to list the variables and provide an idea of the
range covered. It is emphasised however, that unlike linear regression analysis, the information
in Table 4.1 cannot be used to define the range of applicability of the neural network model. This
is because the inputs are in general expected to interact. We shall see later that it is the Bayesian
framework of our neural network analysis which allows the calculation of error bars which define
the range of useful applicability of the trained network. A visual impression of the spread of
data is shown in Fig. 4.1. It can be concluded from Fig. 4.1 that the effect on yield strength
of carbon, manganese, silicon, nickel, molybdenum and heat input have been systematically
studied. Hence, future experiments could focus on examining the effect of chromium in the
range 3-8 wt%, vanadium (0.1-0.2 wt%), cobalt at all concentrations but in greater variety of
alloy systems, tungsten at low and high concentrations, titanium and boron in high strength

weld. The effect of tempering temperature in the range 250-500 °C also needs to be studied.

4.1.2 Ultimate Tensile Strength Database

Table 4.2 shows the range, mean and standard deviation of each variable including the output

(ultimate tensile strength). The corresponding visual impression of the UTS database is similar
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.01 0.22 0.072 0.025
Silicon (wt%) 0.01 1.63 0.344 0.138
Manganese (wt%) 0.27 2.31 1.192 0.41
Sulphur (wt%) 0.001 0.14 0.009 0.006
Phosphorus (wt%) 0.001 0.25 0.012 0.009
Nickel (wt%) 0.0 4.79 0.43 0.888
Chromium (wt%) 0.0 12.1 0.808 1.952
Molybdenum (wt%) 0.0 2.4 0.221 0.368
Vanadium (wt%) 0.0 0.32 0.026 0.06
Copper (wt%) 0.0 2.18 0.063 0.185
Cobalt (wt%) 0.0 2.8 0.007 0.115
Tungsten (wt%) 0.0 3.86 0.091 0.427
Titanium (p.p.m.) 0.0 900 64.9 112.14
Boron (p.p.m.) 0.0 195 5.8 19.08
Niobium (p.p.m.) 0.0 1770 69.6 168.13
Heat input (kJ mm™1) 0.55 7.9 1.6 1.234
Interpass temperature (°C) 20 375 207.8 52.67
Tempering temperature (°C) 20 780 358.3 249.29
Tempering time (h) 0.0 50 6.5 6.45
Yield strength (MPa) 288 1003 533.9 113.64

Table 4.1: The input variables for yield strength model. ‘p.p.m.” corresponds to parts per
million by weight.

to that of the yield strength. The UTS contains an extra input variable oxygen Fig. 4.2, the

effect of which at higher concentrations (above 900 p.p.m.) needs to be studied.

4.2 Yield Strength Model

Some eighty yield strength neural network models were trained on a training dataset which
consisted of a random selection of half the data (1001) from the yield strength dataset. The
remaining 1001 data formed the test dataset which was used to see how the model generalises on
unseen data. Fach model contained the 19 inputs listed in Table 1 but with different numbers of
hidden units or the random seeds used to initiate the values of the weights. Fig. 4.3 shows the
results. As expected, the perceived level of noise (¢,,) in the normalised yield strength decreases
as the number of hidden units increases, Fig. 4.3a. This is not the case for the test error, which
goes through a minimum at three hidden units, Fig. 4.3b, and for the log predictive error which
reaches a maximum at six hidden units, Fig. 4.3c.

The error bars presented throughout this work represent a combination of the perceived level

of noise ¢, in the output and the fitting uncertainty estimated from the Bayesian framework. It
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Figure 4.1: Database distribution used for yield strength model. ‘p.p.m.” corresponds to parts
per million by weight.

is evident that there are a few outliers in the plot of the predicted versus measured yield strength

for the test dataset, Fig. 4.3f. Each of these outliers has been investigated and found to represent
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.01 0.22 0.072 0.024
Silicon (wt%) 0.01 1.63 0.345 0.142
Manganese (wt%) 0.27 2.31 1.191 0.410
Sulphur (wt%) 0.001 0.14 0.009 0.006
Phosphorus (wt%) 0.001 0.25 0.012 0.009
Nickel (wt%) 0.0 4.79 0.426 0.900
Chromium (wt%) 0.0 12.1 0.748 1.810
Molybdenum (wt%) 0.0 2.4 0.219 0.370
Vanadium (wt%) 0.0 0.32 0.0252 0.060
Copper (wt%) 0.0 2.18 0.053 0.160
Cobalt (wt%) 0.0 2.8 0.008 0.110
Tungsten (wt%) 0.0 3.86 0.093 0.500
Oxygen (p.p.m.) 0.0 1650 362 200.8
Titanium (p.p.m.) 0.0 900 67 116.5
Boron (p.p.m.) 0.0 195 6 19.3
Niobium (p.p.m.) 0.0 1770 66 163.6
Heat input (kJ mm™1!) 0.55 7.9 1.56 1.17
Interpass temperature (°C) 20 375 209 51.8
Tempering temperature (°C) 20 770 368 241.8
Tempering time (h) 0.0 50 6.9 6.5
Ultimate tensile strength (MPa) 440 1151 624 117.5

Table 4.2: The input variables for ultimate tensile strength model. ‘p.p.m.” corresponds to parts
per million by weight.

unique data which are not represented in the training dataset, Fig. 4.3e. For example, there is
a weld with a sulphur concentration of 0.15 wt.% and another with a phosphorus concentration
of 0.25 wt.%, both extremely high and unusual level of impurities in weld metals.

It is possible that a committee of models can make a more reliable prediction than an
individual model (Chapter 3). The best models are ranked using the values of the log predictive
errors Fig. 4.3c. Committees are then formed by combining the predictions of the best L models,
where L = 1,2, .. .; the size of the committee is therefore given by the value of L. A plot of the
test error of the committee versus its size gives a minimum which defines the optimum size of
the committee, as shown in Fig. 4.3d.

The test error associated with the best single model is clearly greater than that of any of the
committees Fig. 4.3d. The committee with twenty eight models was found to have an optimum
membership with the smallest test error. The committee was therefore retrained on the entire
data set without changing the complexity of any of its member models. The final comparison
between the predicted and measured values of the yield strength for the committee of twenty

eight is shown in Fig. 4.4.
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Figure 4.2: Database distribution used for ultimate tensile strength model. ‘p.p.m.” corresponds
to parts per million by weight.

Fig. 4.5 indicates the significance (o,,) of each of the input variables, as perceived by first

five neural network models in the committee. The o, value represents the extent to which a
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particular input explains the variation in the output, rather like a partial correlation coefficient
in linear regression analysis. The post-weld heat treatment temperature on the whole explains
a large proportion of the variation in the yield strength Fig. 4.5. All of the variables considered

are found to have a significant effect on the output indicating a good choice of inputs.
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Figure 4.5: The perceived significance o,, values of best five yield strength models for each of
the inputs.
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4.3 Ultimate Tensile Strength Model

The models were trained on 1972 individual experimental measurements, of which a random half
of the data formed the training dataset and the other half the test dataset. The procedures are
otherwise identical to those described for the yield strength model, resulting in the characteristics
illustrated in Fig. 4.6 and the performance of the optimum committee of best models is illustrated
in Fig. 4.7. The perceived significance values of the first five models are shown in Fig. 4.8. Here
the additional input variable oxygen shows more significance along with post-weld heat treatment

variables.

4.4 Application to C—Mn Weld Metals

Carbon—manganese weld metals refer to a popular class of ferritic steels in which the substitu-
tional solutes other than silicon and manganese are generally kept to low concentration levels.
They are interesting because there is a great deal already known about them, making it easy
to interpret the physical significance of the neural network model. Furthermore, there exists an
alternative semi—empirical model for the estimation of the yield and tensile strengths of such
multirun welds [89] enabling a further comparison. The semi-empirical model is henceforth
referred to as the “physical model” or PM for short. The basic values of the variables used
in applying the model to carbon-manganese welds are listed in Table 4.3. The specified low—
temperature heat treatment is simply a standard hydrogen removal treatment (250 °C for 14 h)
applied to most welds before mechanical testing.

The results as a function of the carbon and manganese concentrations are illustrated in
Fig. 4.9 for a variety of interesting cases. The calculated yield strength is in all cases found
to be consistent with that expected from the physical model, although there are systematic
differences at high yield strength values for all cases other than at the highest manganese con-
centration. However, the deviations are all within the error bounds of the neural network model
for yield strength. The major discrepancies arise with the UTS especially at high UTS values.
It is believed that the physical model is poorly constructed since the UTS is essentially taken
arbitrarily to be linearly related to a single variable, the yield strength, Fig. 4.10 shows the
comparison between the measured and strength estimation by the physical model. The physical
model at higher strength values behaved very poorly; it estimated the strength higher than the
measured.

An interesting feature of strengthening due to substitutional solutes is the synergistic effect
with carbon. Fig. 4.11a and b shows that the dependence of the strengthening effect of molybde-
num on the carbon concentration is particularly large; the effect of molybdenum in strengthening

the weld is greater than that of Cr or Mn. This is consistent with published literature [90]. El-

51



Log predictiveerror

Predicted normalised UTS

0.10

0.08 -
_ 0.06 -
0.04 -

0.02

(@)

N A
I
m;
w;

Hidden units

1700 -

=

a

Q

o
!

[EEN

w

Q

o
!

1100

(©)

++
+
+

2 4 6 8
Hidden units

10

0.6

0.3

0.0 -

-0.3

Training Dataset

-0.6
-0.6

-0.3 00 03

0.6

Measured normalised UTS

Test error

Test error

Predicted normalised UTS

(b) +
8- .
6 - . +
4 1 ’ P ' * +
i + o : + * ¢
2 - ; . 1 + . +
0 T T T T T T T T T T
0 2 4 6 8 10
Hidden units
3.0
+ (d)
2.6 1
2.2 1
18 - ++ ++ ++++
1.4 RS
0 10 20 30
Modelsin committee
0.6 .
(f) r
9]
03 - ;?
%
0.0 - ¢
-0.3 -
Test dataset
-0.6 — ‘ ‘
-06 -03 0.0 0.3 0.6

Measured normalised UTS

Figure 4.6: Ultimate tensile strength (UTS) model features.



1200
1000 f
800 f
600 f

400

Predicted UTS / MPa

20 +——F——F——————
200 400 600 800 1000 1200

Measured UTS / MPa

Figure 4.7: Ultimate tensile strength model optimum committee model results.

25
2
<)}
Q15
[\]
(3}
E=
c
2 1
n
0.5
0,
— R =] — - s .
©FE0 R EZ 527385308 8 g gt
= O O @ H
L~ BB L
§ ¢ £ I
g 7z =
=]

Figure 4.8: The perceived significance oy, values of best five ultimate tensile strength models for
each of the inputs.

ements such as molybdenum and vanadium are associated with strong secondary hardening
effects which frequently trigger a reduction in toughness. In ordinary carbon—manganese mul-
tirun welds, the secondary microstructure, i.e. regions of weld metal which are tempered by
subsequent weld runs, lose most of their microstructural strength. This is not necessarily the

case in weld metal containing strong carbide formers. For example, it is well-established that
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Input variable
C (wt%) 0.06
Si (wt%) 0.5
Mn (wt%) 1.5
S (wt%) 0.006
P (wt%) 0.008
Ni (wt%) 0.0
Cr (wt%) 0.0
Mo (wt%) 0.0
V (wt%) 0.0
Cu (wt%) 0.0
Co (wt%) 0.0
W (wt%) 0.0
Ti (wt%) 0.0
O (p.p-m.) 300
B (p.p.m.) 0.0
Nb (p.p.m.) 0.0
Heat input (kJ mm ') 1.14
Interpass temperature (°C) 175
Tempering temperature (°C) | 250
Tempering time (h) 14

Table 4.3: The input variables of carbon—manganese steel weld metal used in the analysis.

the yield strength calculated using the Young-Bhadeshia model (Chapter 2) is always underes-
timated with molybdenum—containing welds, the degree of underestimation increasing with the
molybdenum concentration [1]. The behaviour observed in Fig. 4.11a is not therefore surprising.

The sensitivity of strength to carbon concentration and the net magnitude of the strength-
ening effect decreases for the ultimate tensile strength, Fig. 4.11. This is expected since the
UTS is measured at large plastic strains whereas the yield strength is much more sensitive to
the initial microstructure.

The predicted dependence of the strengthening effect of niobium on the carbon concentration
is shown in Fig. 4.11 . The strength increment plotted on the vertical axis is based on the average
effect of niobium in the concentration range 0-1500 parts per million by weight for any given
carbon concentrations. The strength increment per weight percent of niobium is obviously very
large and this may be reason why niobium is generally not suggested [89].

Fig. 4.12 shows other predictions; although there are no surprises, it is worth noting the

error bars. These error bars can be used to identify regions of the input space where further
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experiments would be useful. For example, the prediction uncertainties associated with niobium,
or with large heat inputs, are much larger than, for instance with changes in the manganese

concentration. This is where future experiments could be focussed.

4.5 Application to ZiCr—lMo Weld Metals

The 2£Cr1Mo weld metal system is designed primarily for applications where the components
will serve at elevated temperatures (450-565°C) for long periods of time (~30 years). This is
in contrast to carbon—manganese weld metals which are used in structural applications such as
buildings and bridges which are essentially at ambient temperature. Consequently, the post—
weld heat treatment is of vital importance to Q%CI1MO weld metals, not only to relieve residual
stresses but also to generate a stable microstructure in which the carbides hinder creep defor-
mation. The basic values of the variables used in applying the models to 2%Cr1Mo welds are
listed in Table 4.4. The specified high—temperature heat treatment is a typical post—weld heat
treatment (PWHT).

Input variable
C (wt%) 0.11
Si (wt%) 0.20
Mn (wt%) 0.80
S (wt%) 0.002
P (wt%) 0.005
Ni (wt%) 0.20
Cr (wt%) 2.25
Mo (wt%) 1.0
V (wt%) 0.0
Cu (wt%) 0.0
Co (wt%) 0.0
W (wt%) 0.0
Ti (wt%) 0.0
O (p.p-m.) 300
B (p.p.m.) 0.0
Nb (p.p.m.) 0.0
Heat input (kJ mm™!) 1.5
Interpass temperature (°C) 200
Tempering temperature (°C) | 690
Tempering time (h) 8

Table 4.4: The input variables of 2.25Cr—1Mo wt% steel weld metal used in the analysis.
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It is notable from the predictions illustrated in Fig. 4.13 that there are greater uncertainties
(larger error bars) associated with the estimation of mechanical properties for the ZiCrlMo
system when compared with the carbon—manganese welds. This is largely because there are
fewer data available for ZiCrlMo welds.

Another striking feature is that the sensitivity of the strength to alloying elements, in the
PWHT condition, is far smaller than in the as—welded condition. This is not surprising given
the severe nature of the post-weld heat treatment at 690°C for 8 hours. It is emphasised
that although the yield and tensile strengths are not particularly sensitive to composition in
the PWHT condition, this will not be the case for creep properties where the tempering heat
treatment is essential for the generation of alloy carbides and to provide a microstructure which

has long term stability.

4.6 Conclusions

The yield strength and ultimate tensile strength of ferritic steel weld metal have been analysed

using a neural network method within a Bayesian framework. The data used were mostly
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Figure 4.11: Change in strength and the YS/UTS ratio as a function of a wt% of substitutional
solute content in carbon-manganese steel welds. The error bars are not included for clarity, but
the maximum values are 60.

obtained from the published literature and represent a wide cross—section of alloy compositions
and arc—welding processes.

Trends predicted by the models appear to be consistent with those expected metallurgically,
although it must be emphasised that only the simplest of trends have been examined since
the number of variables involved is very large. The models can be applied widely because the
calculation of error bars whose magnitude depends on the local position in the input space is
an inherent feature of the neural network used. The error bar is not simply an estimate of the
perceived level of noise in the output but also includes an uncertainty associated with fitting
the function in the local region of input space. This means that the method is less dangerous
in extrapolation or interpolation since it effectively warns when experimental data are lacking

or are exceptionally noisy. The work has clearly identified regions of the input space where

58



further experiments should be encouraged. These models are applied to design new structural,
heat resistant and high strength steel welds without any experimental trials are discussed in
Chapter 6.
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Figure 4.12: Variations in the yield and ultimate tensile strengths of carbon-manganese weld
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Figure 4.13: The effect of carbon, molybdenum and chromium concentrations on the strength
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of 22Cr-1Mo wt% welds in the as-welded and PWHT (690°C, 8 h) conditions.
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