Chapter 3

Neural Network Modelling

Regression analysis is familiar to scientists as a tool to fit experimental data empirically . The
linear relationship is chosen before the best—fit coefficients are derived. The general form of the
equation developed using linear regression is a sum of the inputs x; multiplied by a corresponding
coefficient or weight w; and added with a constant (#). The developed linear equation may
contain non-linear terms, forming a pseudo-linear equation. In linear regression models the
relationship between a input and output tends to be linear and applies across the entire span of
the input space, which may not be reasonable. Neural networks is a general method of non—linear
regression which avoids the difficulties occurs in linear regression technique. In this Chapter the

fundamentals of neural networks and procedure followed to develop models are discussed.

3.1 Neural Networks

A neural network is a general method of regression analysis in which a very flexible non-linear
function is fitted to experimental data. When compared with linear regression analysis, neural
networks is a non-linear regression by introducing an another node which is hidden in between
input and output as shown Fig 3.1. Similar to linear regression method the input variable z;
is multiplied by weight w;, but the sum of all these products forms the argument of a another
transfer function, in this present work it is hyperbolic tangent as in equation 3.2. The final
output is defined as linear function of hidden nodes and a constant, equation 3.1. Thus, the

dependent variable y is defined as;

y=> w?h;+6?, (3.1)
i
where h; defined as;

h; = tanh Z wz(;)avj + 92(1) (3.2)
J

35

where z; are the j variables on which the output y depends, w; are the weights (coefficients) and
0; are the biases (equivalent to the constants in linear regression analysis). The combination of
equation 3.2 with a set of weights, biases, value of 7 and the minimum and maximum values of the
input variables defines the network completely, Fig. 3.1. The availability of a sufficiently complex
and flexible function means that the analysis is not as restricted as in linear regression where
the form of the equation has to be specified before the analysis. The strength of the hyperbolic
tangent transfer function is determined by the weight w;, the exact shape can be varied by
altering the weights. The shape of the hyperbolic transfer function will be varied according to
the availability of data in the input space. A model with one hidden unit (Fig. 3.2a) may not
sufficiently flexible to capture the information from the database, however non-linearity can be
increased by combining several of the hyperbolic tangents as shown in Fig. 3.2b.

The neural network can capture interactions between the inputs because the hidden units
are nonlinear. The nature of these interactions is implicit in the values of the weights, but
the weights may not always be easy to interpret. For example, there may exist more than
just pairwise interactions, in which case the problem becomes difficult to visualise from an
examination of the weights. A better method is to actually use the network to make predictions

and to see how these depend on various combinations of inputs.

Input nodes
O Hidden nodes

O Output node
O

O :

O

Figure 3.1: Schematic illustration of input, hidden and output layers of neural network model
used in the present work.

36

(0)
T e

f{x

Figure 3.2: Hyperbolic tangent relation between inputs z and output y, a) single flexible hyper-
bolic tangent with varying weights b) combination of two tangents.

3.2 Error Estimation

The input parameters are generally assumed in the analysis to be precise and it is normal to
calculate an overall error by comparing the predicted values (y;) of the output against those

measured (t;), for example,

Ep o Y (t; —y5)? (33)
i

FEp is expected to increase if important input variables have been excluded from the analysis.
Whereas Ep gives an overall perceived level of noise in the output parameter, it is, on its own,
an unsatisfying description of the uncertainties of prediction.

MacKay has developed a particularly useful treatment of neural networks in a Bayesian
framework [6], which allows the calculation of error bars representing the uncertainty in the
fitting parameters. The method recognises that there are many functions which can be fitted or
extrapolated into uncertain regions of the input space, without unduly compromising the fit in
adjacent regions which are rich in accurate data. Instead of calculating a unique set of weights,
a probability distribution of sets of weights is used to define the fitting uncertainty. The error
bars therefore become large when data are sparse or locally noisy.

In this context, a very useful measure is the log predictive error because the penalty for
making a wild prediction is reduced if that wild prediction is accompanied by appropriately

large error bars [6]:

37

(m))2
)

1 (¢m) — m
LPE=3" 5(0_(—myz +log (\/(2m§))) (3.4)
m)

where o(™) is the error bar calculated using Bayesian statistics [6]. A larger value of the log

predictive error implies a better model, Fig 3.4b.

3.3 Overfitting

A potential difficulty with the use of powerful non-linear regression methods is the possibility
of overfitting data. To avoid this, the experimental data can be divided into two sets, a training
dataset and a test dataset. The Fig. 3.3 illustrates different degrees of complexity in fitting
the training dataset and the test data. A linear model is simple and does not capture the real
information form the data. An overcomplex model fits all the data in the training dataset, but
badly generalised. The optimum model which is a generalised model captures real complexity
in the database, Fig. 3.3.

The model is produced using only the training data. The test data are then used to check
that the model behaves itself when presented with previously unseen data. The training error
tends to decrease continuously as the model complexity increases, Fig 3.4a. It is the highest
log predictive error (Fig 3.4b) which enables that model to be chosen which generalises best on
unseen data [6].

The analysis uses normalised values of the variables in the range +0.5 as follows:

T — Tmin

oy = L Fmin g5 (3.5)

Tmaz — Tmin
where z is the original value from the database, =4, and z,,;, are the respective maximum and
minimum of each variable in the original data and xx is the normalised value. This step is not
essential to the running of the neural network but is a convenient way of comparing the effect of
different variables on the output. Fig. 3.1 shows the general structure of the simple three layer

neural network.

3.4 Model Development Procedure

The experimental data collected are stored in a particular format. These data are normalised
using equation 3.5. The normalisation of experimental data is not necessary for the development
of models, but it helps in comparing the relative influence of different input variables. Around 80
different neural network models are selected for training over chosen functions (Equ 3.1 and 3.2).
These models will differ in number of hidden units and seed to generate random starting weights.

Before ‘training’ of the model, the experimental database is randomised in order to divide the

38

(b) Generalised model

A (@ Simple model A
O
5 5
g =
= =
O O
e Training data e Training data
o Test data o o Test data o
I nput I nput

o © Overfitting

(@]

Output

e Training data
o Test data

I nput

Figure 3.3: Different degrees of complexity of fitting a input and output in a model.

information into test and training datasets in a fair manner. The first half of the randomised

dataset is used for training and the remaining is for testing how the trained models behave with
unseen data.

For a trained model with database ‘D’, the overall error ‘Ep’ is the sum of squared error

between the desired output (target) ‘¢’ and calculated output ‘y, equation 3.6.

= —Z y)? (3.6)

39

(@)
g Test error
= N
_~ Traning error
—
A
(b)
S
o3
(0
=
kS
<
o
(@)}
@)
I —

Complexity of model

Figure 3.4: Ranking procedure of trained models with varying model complexity a) considering
the variation in the test and training error b) log predictive error [6].

Then to have predictions with error bars, the trained models are ranked with decreasing
magnitude of log predictive error. It is possible that a committee of models can make a more
reliable predictions than an individual model [6]. Starting from the best model, the committee
models are selected until the minimum validation or test error is obtained. The committee
prediction is the average value of individual model predictions. During predictions using the

committee model containing ‘L’ individual models, average output (7) and the committee error

40

bar (o) are calculated using following equations;

_ 1 l
j = le:y() (3.7)

1 1
0'2 = Z Z 051)2 + f Z (y(l) — §)2 (38)
l l

Without changing the complexity of individual models, the committee is retrained on whole
database. During the retraining the weights are adjusted to better fit whole database.

The committee model predictions are the average of calculated values of each individual
model in the committee. The architecture (hidden units, seed, etc.) of committee model is
complex. This complexity is considered by the neural networks during the training and testing
of each individual model. The committee model does not contain any information about any
perceived significance of each individual input variable over the output variable like individual
model, but the only way to know the effect of each input variable on output is by doing predic-
tions for a given set of input variables and varying the single input variable over a range. Note

that error bars have to be taken into consideration during the predictions.

3.5 Interpretation

The neural network can capture interactions between the inputs because the hidden units are
non-linear. The nature of these interactions is implicit in values of weights, which difficult to
interpret. Interpretation is best done by making predictions and examining the trends taking
error bars into consideration.

These error bars, which are calculated using Bayesian inference [6] have special meaning when
compared with regression analysis error calculations. As shown in Fig. 3.5, the error bar is a
measure of uncertainty in fitting parameters in the noisy data region (A) or the warning message
generated when it is making calculations in the region of input space where the data (with
which it was trained) are sparse (B). Thus error bars calculated using Bayesian neural network
represents both experimental noise and the uncertainty in prediction due lack of information in

that data range. The models developed using neural networks are discussed in next chapter.

41

Output

I nputs

Figure 3.5: Schematic illustration of the uncertainty in defining a fitting function in regions
where data are sparse (B) or where there is scatter (A). The dashed lines represent error bounds

due to uncertainties in determining the weights.

42

